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a b s t r a c t

The spatial organization of neuronal elements and their connectivity make up the substrate underlying
the information processing carried out in the networks they form. Conventionally, anatomical findings
make the initial structure which later combines with superimposed neurophysiological information to
create a functional organization map. The most common neurophysiological measure is the single neuron
spike train extracted from an extracellular recording. This single neuron firing pattern provides valuable
clues on information processing in a given brain area; however, it only gives a sparse and focal view
of this process. Even with the increase in number of simultaneously recorded neurons, inference on
their large-scale functional organization remains problematic. We propose a method of utilizing addi-
tional information derived from the same extracellular recording to generate a more comprehensive
picture of neuronal functional organization. This analysis is based on the relationship between the oscil-
latory activity of single neurons and their neighboring neuronal populations. Two signals that reflect

the multiple scales of neuronal populations are used to complement the single neuron spike train: (1)
the high-frequency background unit activity representing the spiking activity of small localized sub-
populations and (2) the low-frequency local field potential that represents the synaptic input to a larger
global population. The three coherences calculated between pairs of these three signals arising from a
single source of extracellular recording are then used to infer mosaic representations of the functional
neuronal organization. We demonstrate this methodology on experimental data and on simulated leaky

s.
integrate-and-fire neuron

. Introduction

The anatomical organization of neuronal elements in the brain,
s well as their spatial relationships can provide important clues as
o the computational properties of underlying neuronal networks.
his spatial organization places constraints on physiological and
omputational studies targeting the unique features of a neuronal
etwork. By contrast, functional connectivity relates to the cor-
elation between the physiological activities of different neurons
Gerstein and Perkel, 1969; Aertsen et al., 1989; Friston, 1994).
lthough the term is not well defined across different methodolo-
ies such as imaging or extracellular recordings, or even within
hese methodologies (Horwitz, 2003) it usually refers to the co-

ctivation of several neuronal elements which informs on their
onnectivity, organization and function. Combining spatial organi-
ation and functional connectivity enables the formulation of the
unctional organization term. For our purposes, functional orga-

∗ Corresponding author. Tel.: +972 3 5317141; fax: +972 3 5352184.
E-mail address: anan.moran@live.biu.ac.il (A. Moran).

165-0270/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2009.10.024
© 2009 Elsevier B.V. All rights reserved.

nization is defined here as the spatial organization of coherent
neuronal elements, and does not refer to a specific behavioral func-
tion.

Functional organization has been studied over the years using
two extreme methodologies: a macroscopic approach that exam-
ines large neuronal populations, and a microscopic approach that
deals with single neurons. At the macroscopic level, electroen-
cephalography (EEG), positron emission tomography (PET) and
functional magnetic resonance imaging (fMRI) have been used
to study inter-region functional organization, both at rest and
during task related activities (Barlow and Brazier, 1954; Adey
et al., 1961; Gevins et al., 1985; Friston et al., 1993; Biswal et
al., 1995; Buchel and Friston, 1997; Pfurtscheller and Andrew,
1999). These macroscopic methodologies have low spatial res-
olution which prevents them from inspecting local features of
the functional organization in a certain region or nuclei. On

the other hand, the microscopic approach is based on single
neuron activity. The neuronal activity is typically derived from
extracellular recordings obtained by using microelectrodes. This
approach provides high spatial resolution, but probes an extremely
sparse sample of the neuronal population even when using mod-

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:anan.moran@live.biu.ac.il
dx.doi.org/10.1016/j.jneumeth.2009.10.024
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rn multi-electrode equipment (Bartho et al., 2004; Buzsaki,
004).

However, the extracellular signal contains additional informa-
ion that may be used to bridge the gap between these two extreme
pproaches and provide multi-scale functional organization infor-
ation.
The signal picked up by the electrode in the extracellular

edium is a summation of a variety of signals derived from many
rocesses and neural elements. These signals include dipoles gen-
rated among others by spiking activity (Rall, 1962), postsynaptic
otentials (Mitzdorf, 1985) and fluctuations in the membrane volt-
ge (Pedemonte et al., 1998; Goto and O’Donnell, 2001). Spiking
ctivity is reflected primarily in high-frequency changes in the sig-
al (typically >300 Hz), therefore it can be extracted from the raw
ecorded extracellular signal by a high-pass filter with a cutoff
requency in this range. This time series, termed multi-unit activ-
ty (MUA), is the summation of the action potentials of multiple
eurons that are in close proximity to the recording electrode.

t is based on the principle that the high-frequency spiking sig-
al decays rapidly over distance (Legatt et al., 1980). The distance
ver which spiking activity may be distinguished from back-
round activity (the summation of more distant neurons) depends
n the size and shape of the neurons and on properties of the
ecording electrode, but is generally on the order of 100–300 �m
Grover and Buchwald, 1970; Henze et al., 2000). The extracellu-
ar spike reflects the intracellular action potential but its shape
s dependent on multiple properties of the neuron (such as chan-
el concentration, dendritic tree structure) and the location of the
lectrode relative to the neuron (Henze et al., 2000; Gold et al.,
006).

The activity of individual neurons may be extracted from the
UA and transformed into multiple point processes, where each

f the time series represents a separable single-unit spike train
SU-ST) or a non-separable multi-unit spike train (MU-ST). In other
ords, whereas the MUA is a time series of the sampled and
ltered signal representing the overall activity recorded extracel-

ularly from nearby neurons, the MU-ST is a set of point processes
hich represent spike times of multiple units. Research on the
roperties of spike trains such as rate, synchronization and pat-
erns has played a major role in furthering our understanding of
euronal processing (Abeles, 1991). The MUA is made up of spik-

ng activity of large or nearby neurons that can be transformed into
pike trains (either SU-ST or MU-ST), and background unit activity
BUA). The BUA represents smaller sub-noise level spikes gener-
ted by the surrounding neuronal population. By separating the
UA from the MUA small and local neuronal populations can be
tudied without the bias of larger dominant spikes (Moran et al.,
008).

The low-frequency (typically <300 Hz) changes in the extracel-
ular signal recorded by the microelectrode are termed the local
eld potential (LFP). This signal is derived from multiple slower
rocesses and is less attenuated over large distances because of its

ower frequency. Thus, it can reflect remote processes in the range
f 0.5–3.0 mm away from the microelectrode tip (Mitzdorf, 1987;
uergens et al., 1999). Historically, LFP was assumed to arise from
xcitatory and inhibitory postsynaptic potentials (Mitzdorf, 1985).
he LFP was thought to reflect the summation of the input to the
ocal network, as opposed to the MUA which represents the output
f the local network (Freeman, 1975; Legatt et al., 1980). However,
ther slow processes contributing significantly to the LFP have been
dentified such as membrane oscillations (Pedemonte et al., 1998;

oto and O’Donnell, 2001) and spike hyperpolarization (Buzsaki,
002). The relationship between the LFP and the various represen-
ations of spiking information is complex. In some cases there is
ignificant mutual information between spiking activity and the LFP
ecorded on the same electrode (Rasch et al., 2008). Other behav-
ence Methods 186 (2010) 116–129 117

ioral events can be reflected in only one of the signals, either in the
LFP or in the spiking activity (Buchwald et al., 1965).

Periodic oscillations play a cardinal role in the normal function
of the nervous system (for a review see Engel et al., 2001; Hutchison
et al., 2004; Buzsaki and Draguhn, 2004). Early studies suggested
that the oscillatory electroencephalogram (EEG) reflected behav-
ioral states of the brain (Adrian and Matthews, 1934; Brazier, 1949).
More recently, oscillations have been identified in different brain
areas in the LFP (Bragin et al., 1995; Murthy and Fetz, 1996; Brown
and Williams, 2005), MUA (Gray and Singer, 1989; Eeckman and
Freeman, 1990), and spike trains (Baker et al., 2003; de Solages
et al., 2008). In addition to their normal expression, pathological
oscillations have also been found in several cognitive and motor
disorders such as epilepsy (Bragin et al., 2002), essential tremor
(Halliday et al., 2000; Deuschl and Bergman, 2002), and Parkin-
son’s disease (PD) (Lenz et al., 1988; Bergman et al., 1994; Levy et
al., 2002; Brown, 2003).

In this manuscript we present a data analysis method which
utilizes the differential manifestation of oscillations in different
extracellular signals. This method may be used to shed light on
the functional organization of multiple scales of the environment
surrounding the microelectrode. A specific implementation of a
subset of this analysis method has recently been used by us to
characterize the local functional organization of the subthalamic
nucleus in Parkinson’s disease patients (Moran et al., 2008). The
methodology presented below describes the general framework
and demonstrates its use on both simulated and experimental data.
This broad approach enables the deployment of the techniques
on diverse neurophysiological signals recorded in different brain
structures during diverse experimental paradigms.

2. Methods

2.1. Animal recordings

The neuronal recordings are from a Cynomologus monkey
(Macaca fascicularis, male, 4 kg), that underwent 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) injections leading to a
Parkinsonian state. All procedures were in accordance with the
National Institutes of Health Guide for the Care and Use of Labora-
tory Animals and Bar Ilan University Guidelines for the Use and Care
of Laboratory Animals in Research and were approved and super-
vised by the Institutional Animal Care and Use Committee (IACUC).
Full details of the experimental protocol appear elsewhere (Erez
et al., 2009). Briefly, data were acquired via multiple microelec-
trodes extended to different nuclei of the basal ganglia through
a recording chamber. Extracellular recording was performed via
glass-coated tungsten microelectrodes (impedance, 0.25–0.7 M�
at 1 kHz). The electrode signal was amplified with a gain of 1000
and band-pass filtered with a 2–8000 Hz four-pole Butterworth fil-
ter (MCP+ 4.10, Alpha–Omega Engineering, Nazareth, Israel). The
signal was continuously sampled at 40 kHz with 14-bit resolution
(Alphamap 10.10, Alpha–Omega Engineering) yielding a ∼0.5 �V
recording amplitude resolution. The continuous digitized signal
was later sorted offline (OFS-2.8.4, Plexon, Dallas, TX) to produce
SU-STs.

2.2. Simulations

Following earlier work by Zeitler et al. (2006), we constructed

a simulated leaky integrate-and-fire (LIF) neuronal environment
with partially correlated input. The environment was expanded
to control the phase of the correlated oscillatory common drive.
Three main components were defined for the single neuron model:
(1) The LFP, which forms the total input to the neuron (Fig. 1A,
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Fig. 1. Simulation framework configuration. (A) Schematic diagram of the input–output configuration of a single leaky integrate-and-fire (LIF) neuron. The rate of the input
layer to the neuron (square) is the sum of an oscillatory signal and white noise; this is transformed to point processes of the spiking inputs (triangle) which are fed to the
LIF neuron (circle). (B) The distribution of phases is shown using a phase histogram and examples of the resulting oscillatory signals. The phases are chosen from either a
narrow Gaussian (left) or a uniform distribution (right). (C–E) Schematic diagrams of the configurations used for testing the relations between different extracellular signals,
C: SU-ST vs. BUA, D: SU-ST vs. LFP, E: BUA vs. LFP. Note: The local population is defined as excluding the single neuron, thus representing the BUA and not the MUA.
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eft rectangle). (2) Poisson conversion neurons that transform the
nput rate into spiking activity (Fig. 1A, middle triangle). A Pois-
on neuron fires stochastically and its probability of generating a
pike at a certain time depends solely on its underlying rate func-
ion. (3) LIF neurons receiving input from the conversion neurons
Fig. 1A, right circle). Each of these LIF neurons received 100 spike
rains created by the Poisson neurons as input and produced an
utput spike train using a conductance-based differential equa-
ion. To create a simulated neuronal environment with partially
orrelated and oscillatory LFP, inputs fed to Poisson conversion neu-
ons were comprised of a mixture of individual random white noise
1 − Nc)��ij and a sine wave with a random phase Nc sin(2�ft + �ij).
he white noise �ij (� = 0, � = 1) was scaled by the common � factor.
wo parameters controlled the degree of correlation between the
nput drives. The first was the correlation fraction Nc (0 ≤ Nc ≤ 1)

hich defines the ratio between the oscillatory and random noise
ssigned to each of the neurons. Higher values led to higher cor-
elations. The second parameter was the distribution from which
he phases of the sine waves were drawn. This was either a narrow
aussian distribution (� = 0.03) which simulated a general in-phase

elation between different input sources (Fig. 1B, left two panels), or
uniform phase distribution which corresponded to out-of-phase
scillatory input received by different neurons (Fig. 1B, right two
anels). A rate constant 	0 = 20 spikes/s was added as a baseline fir-

ng rate. The rate input to a conversion neuron j connected to a LIF
euron i was therefore:

ij = 	0 + Nc� sin(2�ft + �ij) + (1 − Nc)��ij (1)

ith � = 10. The LFP surrounding a given LIF neuron i was calculated

s the sum of n rate input functions (n = 100):

FPi =
n∑

j=1

xij (2)

ig. 2. Diverse signals derived from a single extracellular recording. Box and arrow diag
llustrative extracellular signal recorded in the GPe of a parkinsonian primate. The singl

hile the rest of the signals are time series representing the continuous sampled signals.
ence Methods 186 (2010) 116–129 119

The rate input xij was converted into spike train yij by the Poisson
neurons (Fig. 1A, small circles in triangle). Each set of n individ-
ual spike trains was later fed to a single LIF neuron. The change in
membrane potential is given by

C
dV

dt
= −Ie − Il (3)

with membrane capacitance C, excitatory current Ie, leak current Il,
and V as the membrane potential. The currents Ie and Il are calcu-
lated by

Ie(t) = Ge(t) · (V(t) − Ee), Il(t) = Gl · (V(t) − Er) (4)

where Ge(t) is the instantaneous excitatory conductivity, Ee is the
excitatory reversal potential and Er is the membrane rest potential.
The connection between the input spike trains and the membrane
conductance is given by

Ge(t) =
n∑

i=1

jmax
i∑
j=1

ge(t − tj
i
) (5)

with tj
i

the spike time of the jth spike of neuron i, and ge an alpha
function describing the decay of spike influence over time on mem-
brane conductivity:

ge(t) =
(

g0

(
t




)
e−(t/
)

)
· �(t) (6)

where 
 describes the rate of decay, g0 is the scaling factor and
�(t) is the Heaviside function. Values for the above variables fol-
lowed (Stroeve and Gielen, 2001): 
 = 1.5 ms, C = 325 pF, Ee = 0 mV,

Er = −75 mV, Gl = 25 nS and g0 = 3.24 nS. At the single neuron level
the simulation started with the neuron membrane potential in the
rest potential. For each step the next membrane potential was cal-
culated using Eqs. (1)–(6). When the membrane potential reached
Vthr = −55 mV a spike was generated, its time was recorded, and the

ram defining the processing stages (arrows) and derived signals (boxes) from an
e and multi-unit spike trains (SU-ST and MU-ST, respectively) are point processes
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Fig. 3. Envelope construction procedure. (A) Sample high-pass filtered signal. (B) Enlarged rectifying transformations (left to right): Hilbert transform, half wave rectification
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HWR), and full wave rectification (FWR). (C) The transformed signals following low
f each of the transformation relative to the spike train is shown (�FWR, �HWR, �Hil

egend, the reader is referred to the web version of the article.)

embrane potential was reset to Er. No explicit refractory period
as imposed.

Multi-unit activity generation was started by summing the
ctivity of 19 single LIF neurons as previously defined. This could
lso be presented as the sum of all Dirac delta functions describing
he MU-ST:

U-ST(t) =
19∑
i=1

∑
j

ı(t − tj
i
) (7)

here tj
i

is the jth spike time of ith neuron, and ı is the delta func-
ion. Regenerating the MUA employed a process in which each
pike timestamp from the MU-ST was replaced by a representative
pike shape (taken from the aforementioned experimental data).
o carry out this replacement, the spike train was convolved with
spike shape (length 1 ms, 20 sampling points). In the next step,
hite noise (� = 0, � = 30) was added to the signal and then band-
ass filtered using a four-pole Chebyshev Type II filter with cutoff
requencies of 250 and 6000 Hz. Finally the signal envelope was
alculated using the Hilbert transform.
.3. Coherence

Coherence was calculated by normalizing the cross-spectrum
etween two signals by the multiplication of the square root of
s filtering (40 Hz, four-pole Butterworth) overlaid on the original signal. The phase
corresponding colors). (For interpretation of the references to color in this figure

their auto-spectrums:

Cxy(f ) = |Pxy(f )|2
|Pxx(f )| · |Pyy(f )| (8)

The magnitude of the coherence is bounded between 0 and 1,
reflecting a no to perfect linear correlation between the signals with
relation to frequency f, respectively.

The significant coherence limit was calculated by (Rosenberg et
al., 1989):

Climit = 1 − (1 − ˛)1/(L−1) (9)

with the level of significance set at ˛ = 0.999 and L = 30 (number of
two second consecutive windows in a 1 min signal).

Coherence was measured between all the pairs formed by the
three signals which are illustrated in Fig. 1: SU-ST ↔ BUA (Fig. 1C),
SU-ST ↔ LFP (Fig. 1D) and BUA ↔ LFP (Fig. 1E) with different degrees
of correlation (Nc) and phase distribution of the common correlated
oscillatory drive (��).
2.4. Software

The MATLAB (V2007B, Mathworks, Natick, MA) software used
for the analysis and simulations in this article can be found at:
http://neurint.ls.biu.ac.il/software/Osc.

http://neurint.ls.biu.ac.il/software/Osc
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Fig. 4. Simulation of neuronal oscillations. Different neuronal signals are shown throughout the transformation process (left), and their associated PSD (right). (A) Summed
input representing the LFP displaying a strong 5 Hz peak. (B) LIF neuron output given the signal in (A) as input. Red dots indicate spiking activity where the LIF neuron crossed
the threshold and was reset. (C) Spike train (SU-ST) of the LIF activity presented in (B). The PSD shows the 5 Hz oscillation. (D) Spike times from the signal in (C) were replaced
by non-filtered recorded spike shapes. The sampling rate was increased from 1000 Hz to 20,000 Hz to account for this transition. The 5 Hz peak was still significant. (E) The
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roadband signal was created from a summation of the spikes from (D) and the LFP
50–6000 Hz band-pass filtering. The 5 Hz peak disappeared from the PSD. (G) The
ll PSDs were normalized to the mean power in the 250–350 Hz band (Nc = 0.4, ppha

he reader is referred to the web version of the article.)

. Results

The extracellular signal recorded by a microelectrode conveys
he sum of multiple processes related to neuronal elements. Filter-
ng the extracellular signal separates the original signal into two
omplementary signals: the LFP and MUA (Fig. 2). The cutoff fre-
uency of the filter is typically in the range of 150–300 Hz (low
nd high-pass filter, for LFP and MUA respectively), to generate the
wo signals. In some cases the MUA contains distinguishable spikes
elonging to one or more separable single neurons which may be

dentified and assigned to the specific neurons via online or offline
pike sorting. Additionally, spikes arising from multiple units which
re not separable through sorting may be grouped. The identified
pikes are thus assigned to one or more single-unit spike trains (SU-
T) and multi-unit spike trains (MU-ST). The shapes of the spikes
dentified as belonging to the spike trains may be removed (see
rocedure below) from the MUA leaving a “spike-free” BUA signal.
he low-frequency envelope of any of these high-frequency signals

ay then be calculated using the rectified signals (Fig. 2).
The amplitude of signals derived from the high-pass filtering of

he extracellular signal such as the MUA and BUA may be modulated
y low-frequency oscillations (Fig. 3A). This low-frequency enve-

ope can be calculated using a two-stage process: extraction of the
l in (A) multiplied by 10. The 5 Hz peak greatly increased. (F) The signal in (E) after
l in (E) after full wave rectification (FWR). A 5 Hz peak is clearly visible in the PSD.
(� = 0, � = 0.03)). (For interpretation of the references to color in this figure legend,

instantaneous power of the signal, followed by its smoothing using
a low-pass filter. Multiple methods for extracting the instantaneous
power of the signal may be used, such as:

• Full wave rectification (FWR): y(t) = |x(t)|.
• Half wave rectification (HWR): y(t) =

{
x(t) x(t) > 0
0 x(t) ≤ 0

.

• Absolute value of the Hilbert transform: y(t) =

∣∣∣∣∣∣
1
� · PV

∞∫
−∞

x(
)

−t d


∣∣∣∣∣∣.

Despite the differences in the derived signal among extraction
methods (Fig. 3B), the application of a low-pass filter leads to a
highly similar envelope for the extracellular recorded neuronal
signals (Fig. 3C). The offset of the extracted phase between the
different methods is typically �1◦. This is due to the usage of a sig-
nificantly lower frequency cutoff (typically <100 Hz) than that of

the extracellular spikes and the stereotypic shape of extracellular
action potentials.

To study and validate the decomposition of the raw signal we
reversed the procedure and integrated several signals while eval-
uating the PSD after each composition step. The whole procedure
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ig. 5. Background unit activity extraction procedure. (A) Example of a raw signa
ctivity (red dots) and removal of the surrounding time window (−0.5 to +2.5 aroun
on-spiking windows. The final result of the transformation is the background unit

s presented using simulated data (Fig. 4). Leaky integrate-and-fire
LIF) neurons each received input from a separate group of 100 Pois-
on neurons. Each of these Poisson neurons received a mixture of
ow-frequency (5 Hz) oscillatory input and white noise (see Section

for details). The fraction of oscillatory input (Nc) in this example
as set to 0.4 and the phases were drawn from a narrow Gaus-

ian distribution. The summed neuronal input (Fig. 4A), following
ts Poisson conversion to spiking activity, drove the LIF membrane
otential (Fig. 4B). The resulting LIF neuron spike train (Fig. 4C)
evealed a strong oscillatory component in its power spectral den-
ity (PSD). These oscillations were maintained when a spike shape
eplaced the spike times in the spike train (Fig. 4D) and when the
low input (representing the LFP) was added to the spiking sig-
al to mimic a wide-band recorded signal (Fig. 4E). After high-pass
ltering of the wide-band signal, the remaining signal lost its low-

requency components (Fig. 4F). Envelope extraction, however, led
o the reappearance of the low-frequency oscillatory component,
evealing once again the slow modulations of the burst of spikes
Fig. 4G).

The high-frequency part of the signal recorded by the micro-

lectrode (MUA) contains the single-unit spikes, and multi-unit
pikes reflecting a few nearby neurons. In addition it contains a
ummation of a larger population of more remote or smaller neu-
ons which are classically referred to as generating ‘sub-noise level’
pikes. Separating the activity of the remote neurons from the larger
The same signal following high-pass filtering (MUA). (C) Identification of spiking
spike identification point). (D) Replacement of removed spikes by randomly chosen
ty (BUA).

spikes requires a spike removal procedure (Fig. 5). The preliminary
stage is to identify the spike to be removed. Multiple thresholds
may be used for detection and can depend on the properties of
the neuronal tissue (such as neuronal density and soma size). A
general procedure yielding satisfactory results in multiple brain
areas is based on a signal to noise (SNR) measure. The neuronal
spikes are detected by setting a threshold of 5 standard devia-
tions above and below the mean power of the MUA signal. In the
subsequent step the traces in the segments surrounding each of
these spike timestamps in the MUA signal are replaced by a spike-
free segment from a random location within the same recorded
trace leading to the construction of the BUA. The length of the seg-
ment and its location relative to each spike may be different and
depend on the shape and length of the extracellular spike. These
vary drastically between brain areas and cell types. In the vertebrate
central nervous system in general, segments starting 0.5 ms prior
to the spike timestamp and ending 2.5 ms after that timestamp
leave only negligible energy associated with the spike. The small
inconsistencies between the original and the inserted spike-free
segments do not significantly increase power in the low-frequency

band because these inconsistencies are in the range of the sam-
pling rate which is usually very high. With a sufficiently wide spike
removal window the boundaries of the inserted signal are in the
range of the noise. This reduces their influence on low-frequency
power.
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ig. 6. Low-frequency oscillations in extracellular signals. Power spectral density (
n the LFP do not appear in the MUA or the BUA. The oscillations are apparent again
ower in the 250–350 Hz band of the signal.

To examine the experimentally recorded data in the lower
requency domain we applied spectral analyses to the raw (wide-
and) signal of a globus pallidus external segment (GPe) neuron of
Parkinsonian primate as well as its derived signals (Fig. 2). The

aw signal, LFP and spike train were directly spectrally analyzed,
hile the BUA and MUA were spectrally assessed following enve-

ope extraction (Fig. 6). The power was normalized to represent
he power in a certain frequency relative to the mean power in
he 250–350 Hz frequency band of that signal. The raw signal pre-
ented two sharp peaks near 5 and 22 Hz. These peaks were clearly
een in the LFP signal but were filtered out by the high-pass fil-
ering of the MUA. The PSD of the extracted spike train revealed
hat this signal only maintained the 5 Hz peak. Removal of these
pikes from the MUA led to a BUA which did not display any of
he peaks. The rectification process of both the MUA and the BUA
evealed the low-frequency modulation of the signal and allowed
he 5 Hz peaks to reemerge. The increased power around 22 Hz was
imited to the LFP and may be due to non-linear transformations
erformed by the neurons on the input. The transformation per-
ormed by the GPe neurons led to filtering of the high-frequency
nput whereas the lower frequency oscillations presented in their
utput were maintained, as is clearly visible in the SU-ST, MUA and
UA (Fig. 6).

The relation between the different signals in the frequency
omain was analyzed using a coherence measure that normal-

zes the squared cross-spectrum of two signals by dividing by both
uto-spectrums. An example of this method is presented using an
xtracellular signal recorded in the subthalamic nucleus (STN) of a

on-human primate model of Parkinson’s disease (MPTP treated)
Fig. 7). The raw unfiltered signal was used to produce the three
erived signals of the LFP, SU-ST and the BUA envelope (Fig. 7A), and
ach of their low-frequency modulations was extracted (Fig. 7B).
he PSD of the three signals showed a distinct peak near 13.5 Hz
raphs of the signals presented in Fig. 2. The low-frequency oscillations which exist
e signals following the rectification process. All PSDs were normalized to the mean

(Fig. 7C). Coherence analysis was then used to assess the linear
relation and phase shift between these signals. In this example, the
coherences between all three signals were significant at 13.5 Hz
(Fig. 7D). Moreover, phase analysis showed that SU-ST and BUA
were oscillating almost in-phase (i.e. with zero time delay between
the primary neuron and its surrounding neuronal population),
while there was about a 114◦ phase shift between LFP and the two
other signals in this frequency. This shift represents a time-lag of
about 25 ms between the LFP and the neuronal output signals. In
this respect coherence analysis serves to relate co-oscillations of
the different signals and thus sheds light on their tendency toward
co-activation.

The study assumes different effective ranges of decay between
the LFP and BUA signals. To confirm this difference we have
inspected the coherence and correlation between LFP–LFP and
BUA–BUA signals pairs recorded extracellularly in the globus pal-
lidus of two monkeys at distances of 1–2 mm (Fig. 8). A total of
104 pairs of concurrently recorded signals from different electrode
pairs were processed: LFPs were extracted from the raw signals
by using a low-pass filter (5th order Chebyshev II with a cutoff
at 100 Hz) and BUAs were constructed as described above. Both
low-frequency coherence (with a 1 Hz resolution, and the absolute
values of BUAs) and overall correlation between each pair were cal-
culated. The two analyses confirmed the basic difference between
the relations of these signals. In the coherence domain LFP pairs
showed significantly higher coherence than the BUA pairs along
the 2–40 Hz spectrum range (Fig. 8C). Collapsing over all frequen-
cies, the mean correlation of the two groups revealed the same

significant difference (paired Student’s t-test, p < 0.001) (Fig. 8D).
These results support the different decay properties of the two
signals, with high coherence and correlation of LFP versus low
coherence and correlation values for the BUA over millimeter range
distances.
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Fig. 7. Coherence between different extracellular signals. (A) The raw, unfiltered, extracellular signal recorded in the STN of a non-human primate model of PD was the source
of the three derived signals of the LFP, SU-ST and BUA envelope. The SU-ST and the BUA envelope were then low-pass filtered (cutoff at 20 Hz) to produce their low-frequency
modulations (red and green lines, respectively). (B) Superposition of the three low-frequency modulations of the signals (lower panel presents a close-up). (C) Power spectral
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ensity of the three derived signals. The peak frequency of all signals is at 13.5 Hz
he peak frequency (13.5 Hz) calculated from the cross-spectral density. (For interp
ersion of the article.)

Simulations were used to further study the relations of common
scillatory power, connectivity and coherence across the SU-ST,
UA and LFP. We used an environment of 20 LIF neurons (simu-

ating the output neurons or the ‘recorded’ single units), each of
hich received spike train input from 100 Poisson neurons which

tochastically converted the input LFP into spike trains (Fig. 1A). As
FP is assumed to mainly reflect synaptic activity, it can be mod-
led as the sum of the rate functions which drive the presynaptic
eurons. This input LFP was set to the sum of two components:
ine waves and a white noise. The level of input oscillation was
ontrolled by the scalar parameter Nc which set the fraction of
scillatory versus white noise in the input. Another parameter
hich controlled the strength of correlation was the phase distri-
ution function from which the phase of the oscillatory drive was
rawn. In our study it was either uniformly distributed, reflect-

ng a non-correlated out-of-phase oscillatory drive, or a narrow
aussian distribution reflecting a high similarity in the oscillation
rive (Fig. 1B). To study the influence of the level of input oscilla-
oherence of the three derived signals. � values are the phases between signals in
on of the references to color in this figure legend, the reader is referred to the web

tory drive (Nc) on the coherence across the three signals separately
from the phase distribution parameter, we used phases from a nar-
row Gaussian (� = 0.03) and changed the Nc parameter from a very
low oscillatory fraction (0.005) to a highly correlated input (0.4).
Decreasing Nc led to reduced oscillation in the BUA (Fig. 9A), which
was evident both visually on the BUA trace and using spectral anal-
ysis methods. Coherence of the BUA with SU-ST decreased with Nc

reduction but was below statistical significance only when Nc was
below 0.05 (Fig. 9B). Varying levels of oscillatory drive (Nc) dras-
tically altered the oscillations in the LFP (Fig. 9C). This produced
similar coherence results with SU-ST but typically higher values
than those for coherence with the BUA (Fig. 9D).

Several biologically plausible functional organizations were

simulated and the paired coherences between all three signals were
assessed to examine whether the functional organization could be
inferred from the results (Fig. 10). The configurations were built
on the framework presented in detail in Section 2 (Fig. 1). The first
scenario was a single oscillatory neuron which was a member of a
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Fig. 8. Different effective range between LFP and BUA. (A) One second long traces
of two concurrently recorded LFP signals from electrodes spaced ∼1 mm apart. LFPs
were extracted from the raw signals using low-pass filter (5th order Chebyshev II,
100 Hz cutoff). (B) The same raw signals as in (A) were used to extract the high-
passed signals and consequently to reconstruct the BUAs (BUA—black, removed
s
(
i
fi

h
p
o
w
w
r
w
p
g
e
e
o
s
t

4

t
b
T
l
n
t
p
i
p
a
t
s

pikes—red). (C) Coherence between of LFP pairs and rectified BUA pairs (n = 104).
D) Correlation between pairs of LFPs and pairs of rectified BUAs signals. Error bars
n (C) and (D) represent SEM. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of the article.)

ighly oscillatory (Nc = 0.4), closely phased local oscillatory neural
opulation surrounded by a large volume of Poisson firing non-
scillatory neurons (Fig. 10A). In this scenario significant coherence
as only found between the SU-ST and BUA. The second scenario
as a highly oscillatory (Nc = 0.4) and closely phased global neu-

onal population (Fig. 10B). In this scenario significant coherence
as found between all three paired coherences. The third scenario
resented a low oscillatory (Nc = 0.005) closely phased local and
lobal oscillatory population (Fig. 10C). Here, significant coher-
nce was only found in the BUA–LFP relation. The fourth scenario
xplored another scenario of a highly oscillatory (Nc = 0.4), yet out-
f-phase, local and global oscillatory populations (Fig. 10D). In this
ituation significant coherence was found only between SU-ST and
he LFP.

. Discussion

This study presents a novel methodology to infer the func-
ional organization of neuronal tissue on the basis of the coherence
etween slow oscillatory activities in different extracellular signals.
hree signals were derived from the raw recorded extracellu-
ar signal and their oscillatory activity was assessed. (1) Single
euron oscillations were quantified based on the spike train iden-
ified by spike sorting of the high-pass filtered recording. (2) Large
opulation oscillations were quantified based on LFP oscillations
dentified using the low-pass filtered recorded signal. (3) Small
opulation oscillations were defined using the background unit
ctivity derived from the rectified, spike-removed high-pass fil-
ered recording. The relations between the oscillations of these
ignals as depicted by their coherence imply different functional
ence Methods 186 (2010) 116–129 125

architectures in the surrounding neuronal population. We applied
these methods to the oscillating signals in the basal ganglia of
a Parkinsonian primate and demonstrated that these oscillations
may be replicated by a simulated environment of LIF neurons. The
simulation setup allowed us to investigate the relations between
different functional organizations and the resulting coherence
between signals.

Modern studies of neural information encoding have focused
on the point processes representing spike trains of well isolated
single units (Abeles, 1991). Historically, analysis of multi-unit activ-
ity (MUA) was widespread (Freeman, 1975) but is now mainly
restricted to studies in which electrodes (typically macro or lower
impedance electrodes) are used and where separation into single
units is impossible (but see Schwartz, 2004; Hasenstaub et al., 2007
for modern uses of MUA). The study of MUA using microelectrodes
has been further limited by the distortion created by dominant large
neurons and has thus been confined to cases in which no large
single units are identified on the electrode. Our study presents a
methodology for removing the dominant spikes, and produces a
signal which is the sum of a larger population of neurons located
more distally from the electrode, the BUA. Unlike MUA, the BUA
signal provides a unique opportunity to relate the summed activity
of a localized network to the activity of one or more single neu-
rons (SU-STs) within the same area. The critical importance of the
properties of this relation was underscored in our recent article
(Moran et al., 2008) where we showed that although dominant
neurons may oscillate, thus causing oscillatory MUA, their BUA
did not display significant oscillations, and hence pointed point-
ing to a out-of-phase oscillatory population or a non-oscillatory
population.

The amplitude of the action potential decays exponentially with
the distance from the neuron and its decay constant depends on the
radius of the soma (Rall, 1962). Thus, the distance from the record-
ing electrode and soma size are the major components determining
the extracellular action potential size (although see Lemon, 1984;
Henze et al., 2000; Gold et al., 2006 for other components such
as the neuron shape and electrode position relative to the den-
dritic tree). In most areas of the CNS where the size of the soma
varies between 10 and 40 �m, neurons at a distance of less than
roughly 150 �m may be identified as single units over a noise level
of approximately 50–100 �V (Henze et al., 2000); for a discussion
on the expected density of neurons versus the actual neurophysio-
logically identifiable neurons (see Robinson, 1968). Units within a
diameter of roughly 200–300 �m around the electrode form most
of the multi-unit signal, depending on the soma size and packing of
the surrounding tissue (Lemon, 1984; Logothetis, 2002). The num-
ber of neurons within this diameter varies greatly depending on the
brain structure and the electrode parameters used but is roughly
on the order of 102 (Robinson, 1968). Identification of oscillatory
activity in the summed activity of multiple neurons (such as in the
BUA) is significantly easier than for the activity of single neurons
and may extend beyond these radii (Huang and Buchwald, 1977;
Arezzo et al., 1979). Thus, even in the presence of separable single
units in the recorded signal, the background activity may provide
a more robust signal for identifying and estimating low-frequency
oscillation. Throughout this study we used only the BUA instead of
the raw MUA, which contains the large single-unit spikes. This is
because relating the spike train to the envelope of the MUA would
lead to an inevitable common effect of the spikes on both signals
which would bias the phase of their relation toward zero. By con-
trast, the low-frequency changes in the raw extracellular recorded

signal (i.e. LFP) primarily represent slow processes in the neuronal
tissue such as synaptic activity, membrane potential oscillations
and spike hyperpolarizations (Logothetis, 2003). Slow modulation
of spiking activity may also contribute to the LFP, but this contri-
bution was found to be negligible with respect to the other sources
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Fig. 9. Coherence between simulated signals. (A) BUA of 19 LIF neurons. Each neuron’s spike time was replaced by a spike shape and all spikes were summed and a white
n d. (B)
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oise (� = 0, � = 30) was added. Variable fractions of oscillatory inputs (Nc) were use
arameter as the other 19 neurons and the constructed BUA presented in (A). (C) T
rives as (A). (D) Coherence between a single LIF neuron created with the same Nc

entioned above (Logothetis, 2002). Low-frequency signals have
slower decay over space leading to detectible oscillations over
illimeters or even centimeters in the extreme case of electroen-

ephalography (EEG) or electrocorticography (ECoG). The exact
ange influencing the LFP in a certain location is dependent on many
arameters such as species, brain region and electrode parameters;
owever, within a certain location the spatial influence is funda-
entally different, by orders of magnitude, between LFP and BUA

as a derivative of the MUA) (Mitzdorf, 1987; Juergens et al., 1999;
ogothetis, 2002). This difference in spatial influences between the
ifferent derived signals is a key parameter which underlies our
nalysis. Our study supports existing data (Mitzdorf, 1987; Gray et
l., 1995; Juergens et al., 1999; Henze et al., 2000; Logothetis, 2003;
oense and Logothetis, 2008) demonstrating that over a millime-

er range distances, the decay of the low-frequency LFP is small
ielding a highly correlated signal (∼0.5) while the high-frequency
ature of the BUA leads a large decay yielding only minor corre-

ations (∼0.01) resulting probably from active processes. The data
oes not prove directly the source or decay parameter but provides
dditional support to the existing vast body of evidence underlying
ur understanding of the two signals. Further multi-scale stud-
es providing evidence regarding micro- and macroscale activity
uch as the combination of imaging and electrophysiology may
mprove our understanding of the exact nature of the different
ignals.
Neuronal oscillations play a crucial role in the neurophysiol-
gy of the CNS. Oscillatory activity in which a single neuron fires
pikes with a specific phase relation to a small band of frequen-
ies may be reflected in coherent activity with other neurons in
he localized or generalized population. Thus, oscillatory activity
Coherence between the spike train of a single LIF neuron created with the same Nc

med input (LFP) to the simulated neurons using the same fractions of oscillatory
eter as the LFP presented in (C).

is readily recorded in different extracellular signals such as SU-ST,
MUA and LFP (Engel et al., 2001; Hutchison et al., 2004; Buzsaki
and Draguhn, 2004). The functional organization of neurons within
neuronal tissue determines the signals which display the oscilla-
tory activity. Single neuron (SU-ST) oscillations are apparent when
the oscillation frequency maintains a non-random distribution. A
local population of neurons (MUA or BUA) will display oscilla-
tory activity only when its activity involves the same frequencies
with at least a partially in-phase phase distribution. The global
input to the population of neurons (LFP) maintains significant oscil-
latory power based on the total phase distribution. Measuring
the coherence between these three oscillatory activities enabled
us to infer the different functional organizations of the neuronal
tissue.

We tested four common organizations of neural populations
using our simulation framework (Figs. 1 and 10). The first con-
figuration reflects synchrony in a small population of neighboring
neurons positioned within a global population of non-oscillatory
neurons (or out-of-phase neurons). In this configuration the coher-
ence between the spiking train of the SU-ST and BUA yielded high
values. When the neuronal population was localized, its contri-
bution to the overall population was small, resulting in negligible
coherence of both the SU-ST and the BUA with the LFP. In addition,
because the LFP primarily represents the input to the neurons, a lack
of coherence may be due to locally generated oscillations which are

not part of the input signal to the network. The second configuration
mimicked coherent activity within a larger and homogenous pop-
ulation, resulting in significant coherence between all the signals.
A coherent activity spanning a large but sparse population results
in significant coherence between the LFP and the background but
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Fig. 10. Relating coherence of neural oscillations to functional organization. Four
neuronal functional organization scenarios (left), and the derived coherences
between SU-ST, BUA envelope and LFP (right). The arrow circled in blue represents
the oscillatory SU-ST picked up by the recording electrode. Arrows circled in red rep-
resent other oscillating neurons at the same frequency. The dashed line delimits the
area where BUA activity can be detected by the recording electrode. The red line in
the coherence graphs marks the p < 0.001 significance limit. (A) Isolated highly corre-
lated (Nc = 0.4) and closely phased local population of oscillatory neurons in a global
non-oscillatory population. (B) Highly correlated (Nc = 0.4) and closely phased local
and global oscillatory population. (C) Sparsely correlated (Nc = 0.005) and closely
phased local and global oscillatory population. (D) Highly correlated (Nc = 0.4), but
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the framework to multiple simultaneously recorded electrodes
niformly phase distributed local and global oscillatory population. (For interpreta-
ion of the references to color in this figure legend, the reader is referred to the web
ersion of the article.)

egligible coherence with the spike trains of individual neurons
Zeitler et al., 2006). Finally, oscillatory activity within a large pop-
lation which varies in its phases across the neurons resulted in

ow coherence that was dependent on the phase distribution of the
urrounding neurons. This was due to the finite number of oscilla-

ors which does not sum to zero, as expected from an infinite sum
f sinusoidal waves. It is important to note that we do not claim
o have any information about the synaptic connectivity between
eurons, but rather only their spatial organization. This is cru-
ence Methods 186 (2010) 116–129 127

cial when drawing conclusions from the data. For example, when
observing the LFP, this method will not enable the identification of
the source of the driving synaptic input, whether outside the spe-
cific tissue or caused by collaterals within the same neural tissue.
Rather, the analysis can characterize the functional organization of
the synaptic input as previously defined.

The simulated data used as a test case for the implementa-
tion of the analysis methods were constructed with an input set
of pure sine waves. This enabled us to control for the oscilla-
tion frequency and phase of the oscillatory input, so that simple
analytical and computational analyses could be applied. This, how-
ever, is clearly not the case for experimentally recorded neuronal
signals. Biological oscillations generally tend to exhibit frequency
drifts, even when they have a general tendency to display a char-
acteristic frequency. Apart from the frequency, the phase of the
oscillation also shifts, or is influenced by a non-periodic change
which cause phase shifts (Hurtado et al., 2004, 2005). Coherence
analysis is very sensitive to frequency and phase drifts which
cause its values to drop below significance levels. This is also
why it is harder to see significant coherence between SU-ST and
LFP whereas it is easier to detect them in the MUA–LFP relation
where the drifts are summed together and show stronger corre-
lated activity. The simplified oscillation model used in this study
enables the definition of qualitatively different organizations of
neuronal environments. Expansion of the computational study to
include more biologically plausible oscillatory characteristics is
important for predicting the magnitude of the expected coher-
ence and providing a numerical or quantitative assessment of the
populations of co-oscillating neurons in neighboring and remote
areas.

Bridging the gap between the organization (anatomy) of the
brain and its function (physiology) has been a challenge since
the early studies of the nervous system. Anatomical studies have
attempted to tackle this issue through tracing studies designed
to identify the connectivity needed to perform a specific func-
tion. The main advantage of the anatomical approach is that it
can explore thousands of neurons, and directly answer the con-
nectivity question. Its main drawbacks, however, are that it must
be done in vitro rather than in vivo, and the fact that there is
no true functional connectivity assessment (e.g. silent synapses).
Other methodologies that have approached this question include
single-unit correlations (Bartho et al., 2004), which are limited to
describing a tiny sample within the neuronal population, spike
triggered averages (Rieke et al., 1997) that attempt to link a sin-
gle neuron to the LFP representing its input, and microelectrode
recording during fMRI (Logothetis, 2002) relating a single cell to
more generalized brain activity. We presented a way of utilizing a
recording from just one extracellular electrode to infer information
about both local and global populations surrounding the recorded
neuron.

This manuscript focused on the application of the method
to oscillatory activity recorded from one microelectrode to
infer the functional organization. Its scope, however, may be
expanded to incorporate both non-oscillatory signals and input
from multiple electrodes. It can be adapted to the non-oscillating
domain by using temporal correlations or external-event trig-
gered responses between the different signals (SU-ST, BUA and
LFP). Assessing the relation of both measures in close temporal
proximity versus remotely timed interactions makes it possi-
ble to estimate the strength of co-activity of the single neurons
and their surrounding local and global populations. Extending
(as is common in both static arrays and independently mov-
able electrodes) may lead to the identification of related local
populations and their response to partially overlapping global
input.
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The method presented in this manuscript enables the recon-
truction of the basic functional organization of neuronal areas
ased solely on existing neurophysiological data. Shedding light
n the spatial organization of neuronal elements is an important
tep toward uncovering the computation which may be performed
y the neural elements and the localized networks they form. This
unctional organization of neuronal systems is thus an essential
ey to understanding the information processing carried out within
hese structures in states of health and disease.
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