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Abstract
Estimation of the power spectrum is a common method for identifying oscillatory changes in

neuronal activity. However, the stochastic nature of neuronal activity leads to severe biases

in the estimation of these oscillations in single unit spike trains. Different biological and ex-

perimental factors cause the spike train to differentially reflect its underlying oscillatory rate

function. We analyzed the effect of factors, such as the mean firing rate and the recording

duration, on the detectability of oscillations and their significance, and tested these theoreti-

cal results on experimental data recorded in Parkinsonian non-human primates. The effect

of these factors is dramatic, such that in some conditions, the detection of existing oscilla-

tions is impossible. Moreover, these biases impede the comparison of oscillations across

brain regions, neuronal types, behavioral states and separate recordings with different un-

derlying parameters, and lead inevitably to a gross misinterpretation of experimental results.

We introduce a novel objective measure, the "modulation index", which overcomes these

biases, and enables reliable detection of oscillations from spike trains and a direct estima-

tion of the oscillation magnitude. The modulation index detects a high percentage of oscilla-

tions over a wide range of parameters, compared to classical spectral analysis methods,

and enables an unbiased comparison between spike trains recorded from different neurons

and using different experimental protocols.

Author Summary

Neuronal oscillations play a key role in normal behavior and during multiple pathological
conditions. In this manuscript, we expose major biases and distortions which arise from
the quantification of neuronal spike train oscillations. These, previously neglected, biases
hinder the comparison of oscillations across brain regions, neuronal types and behavioral
states, leading inevitably to severe misinterpretation of experimental results. We demon-
strate the biases computationally, formulate them analytically and validate their appear-
ance and magnitude in an experimental dataset recorded from Parkinsonian non-human
primates. Next, following a formulation of the distortions, we introduce a novel objective
measure, the "modulation index", which overcomes these biases, and enables a reliable de-
tection of oscillations from spike trains and a direct estimation of the oscillation
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magnitude. The modulation index is validated on the same experimental data demonstrat-
ing the unbiased detection of beta oscillation in the globus pallidus during Parkinsonism.
The manuscript provides a solid infrastructure for oscillation analysis which benefits mul-
tiple neuroscience fields ranging from basic science to clinical studies, moreover its results
may be expanded to encompass additional fields in biology which require the spectral
analysis of point process data.

This is a PLOS Computational BiologyMethods paper

Introduction
Neuronal oscillations play a key role in normal behavior and in different pathological condi-
tions [1–3]. Neuronal oscillations are typically classified into a range of frequencies including
the delta (1–4Hz), theta (4–8Hz), alpha (8–12Hz), beta (12–30 Hz), and gamma (30–80Hz)
bands [3]. Enhanced expression of specific oscillatory frequencies or oscillations in a broader
band is perceived as indicative of different normal functions, such as the enhanced gamma
preceding movement [1] and different pathological conditions such as the enhanced beta as-
sociated with Parkinsonism [4]. Analysis of the power spectrum is a common method for
identifying enhanced (or reduced) oscillations in neuronal data, and is widely used on a vari-
ety of brain signals spanning multiple orders of magnitude, such as electroencephalograms
(EEG), local field potentials (LFP), multiunit activity (MUA), single unit spike trains and cel-
lular membrane potentials [5–8].

The time of occurrence of action potentials emitted by a single neuron; i.e., single unit spike
trains, are a major source of neurophysiological data stemming from both intracellular and ex-
tracellular recordings. These neuronal spike trains may be viewed as a stochastic point process
where a discrete event represents each action potential [9]. The generation of each spike within
the train is assumed to be dependent on an underlying instantaneous firing rate. The resultant
point process reflects the originating rhythm only partially since the individual events are sto-
chastically generated from the rate function [10]. Thus, despite an underlying oscillatory firing
rate, in most cases the neuron will skip a large portion of the oscillation cycle or even entire cy-
cles [11]. The most simplistic statistical spike train model assumes that the generation of each
spike is dependent solely on the underlying instantaneous firing rate, and is independent of all
other previous spikes. This model is termed the inhomogeneous Poisson process when the in-
stantaneous firing rate changes over time. Spectral analysis of an experimentally recorded spike
train under this assumption is thus assumed to reflect the oscillations of the underlying instan-
taneous rate directly. However, different properties of the neuron or the experiment can cause
the spike train to reflect its underlying oscillatory firing rate well or poorly, and hence can facil-
itate or impede the detection of an underlying oscillation [7,10].

In this paper, we address the problem of oscillation detection in spike trains. First, we quan-
tify the influence of different biological and experimental factors on the detection of the spec-
tral peak and its significance. We then analytically derive a solution for the modulation index
of an oscillatory Poissonian neuron and present a novel objective measure that enables reliable
detection of oscillations in spike trains. We investigate the oscillations in experimentally re-
corded neurons from Parkinsonian primates, and compare these experimental results to our
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numerical and analytic findings. Finally, we derive a solution for the evaluation of the actual re-
cording duration required for the detection of spike train oscillations in experimental data.

Results
The spiking activity of oscillatory neurons can be modeled as an inhomogeneous Poisson pro-
cess whose rate λ(t) is modulated by a cosine function (Fig 1A):

lðtÞ ¼ r0 � ð1þm � cosð2p � f0 � tÞÞ ð1Þ

where r0 is the baseline firing rate, 0�m� 1 is the modulation index, and f0 is the oscillation
frequency. Classically, the oscillatory nature of the neuronal activity is assessed using spectral
estimation methods. The power spectrum of this rate function enables the identification of the
oscillation base frequency (f0) which appears as a clear peak in that frequency, while all the
other frequencies have no power (Fig 1B). However, estimation of the power spectrum of the
Poisson generated spike train, ρ(t), from this rate function (Fig 1C) results in a reduced peak at
the base frequency and increased power in all the other frequencies, such that detection of the
base frequency is not straightforward (Fig 1D). The power spectrum can be normalized to re-
flect the signal—to—noise ratio (SNR) in standard deviations of the power in each frequency
relative to the mean power in the 100–500 Hz frequency band of the spike train which serves as
a noise baseline for different values of the baseline rate (Fig 1E–1G). The power spectrum of
this generated spike train presents an increased peak at f0 relative to the baseline. The SNR of
these simulated neurons varies linearly as a function of the base firing rate of the neuron (Fig
1H). As a result, the detection of significant oscillations crossing a specific SNR threshold is not
possible for a neuron with a low baseline firing rate (Fig 1E), compared to neurons with higher
firing rates (Fig 1F–1G), which have a higher SNR and are therefore identified as oscillatory.

Simulated neurons can illustrate the potential firing rate induced bias in the assessment of
spectral activity. To examine the effect of the mean firing rate on the detection of oscillations in
experimentally recorded data, we calculated the power spectrum of globus pallidus internus
(GPi) neurons recorded in four non-human primates (NHPs) following injections of 1-meth-
yl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) which led to the appearance of Parkinsonian
symptoms. The firing pattern of a large proportion of the GPi neurons in the Parkinsonian
NHP resembles Poissonian firing, which is modulated in an oscillatory manner at a base fre-
quency in the beta band (10–15 Hz) [12–14] (Fig 2A). In the experimental dataset (229 neu-
rons), which consisted of neurons with firing rate in the wide range of 20 to 180 spikes/s and a
positive corrected SNR value, the SNR of the highest peak within the beta band varied consid-
erably but exhibited a linear relation with the firing rate (Fig 2B). Thus, the fraction of neurons
identified as oscillatory; i.e., neurons with a SNR�5, increased with the firing rate of the neu-
rons (Fig 2C). This implies that in real experimental data, naïve usage of the power spectrum
results in a biased detection of oscillatory activity that can easily lead to misinterpretation of
the experimental dataset.

Simulations were next used to quantify the effect of different biological (mean firing rate,
oscillation's modulation magnitude) and experimental factors (recording duration) on the
SNR. The values of each condition were obtained from 1000 simulated Poisson spike trains
generated from a single oscillatory (f0 = 12 Hz) rate function. When the duration was fixed,
and the SNR was estimated over a range of firing rates and modulations, the simulations
showed that the SNR had a linear relation to the baseline firing rate (Fig 3A), and a squared re-
lation to the modulation index (Fig 3B). When the modulation index was fixed, and the SNR
was estimated over varying firing rates and durations, the simulations indicated a linear rela-
tion of the SNR to the firing rate (Fig 3C), and a square root relation to the total length of the
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Fig 1. Limited representation of oscillations following a rate to spike train transformation. (A) A short (1 second) segment taken from an oscillatory
rate function (f0 = 12 Hz, r0 = 5 sp/s andm = 0.5). (B) Power spectrum of a 5 minute segment taken from the rate function. The dashed vertical line indicates
f0. (C) A short (1 second) example of a Poisson generated spike train from the same rate function. (D) Power spectrum of the 5 minute spike train. (E-G) The
power spectrum normalized to SNR units, when the base firing rate is (E) 5 sp/s, (F) 15 sp/s, and (G) 30 sp/s. (H) The peak oscillation amplitude as a function
of the mean firing rates. The circles indicate the f0 oscillations shown in examples E-G, and the solid line indicates the fitted linear function.

doi:10.1371/journal.pcbi.1004252.g001
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recording (Fig 3D). These relations suggest a dependence on these factors that impacts the de-
tection of significant oscillatory activity (Fig 3E–3F). Increases in the firing rate, modulation
index (Fig 3E) and recording duration (Fig 3F) result in increased detection of the spectral
peak. This dependence on biological and experimental variables thus shows that the ability to
objectively detect a peak in the power spectrum is limited. This dependence hinders the com-
parison of different behavioral states or brain areas and leaves them prone to biases. The for-
mulation of an objective method of measuring oscillations is thus a necessity to enable
unbiased comparisons of spike trains arising from different biological and
experimental sources.

The power spectrum of an inhomogeneous spike train over a period (T) is (see methods:
power spectrum of a finite inhomogeneous Poisson process):

SrT ðf Þ ¼
1

T

ðT

0

lðtÞdt þ j ðT

0

lðtÞe�i2pftdtj2" #
ð2Þ

In the specific case of cosine rate modulation over a base frequency (f0) (Eq 1) the power
spectrum is: (seemethods: power spectrum of an inhomogeneous Poisson process with an

Fig 2. Spike train oscillations—Experimental results.GPi neurons (n = 229) recorded in MPTP treated non-human primates that display typical beta band
oscillations (A) Extracellular high pass filtered signal depicting a single GPi neuron (top), and the extracted spike train (bottom). (B) The effect of the firing rate
on the SNR (R2 = 0.06, p <0.001). (C) Spectral peak detection as a function of the firing rate. The significance level for peak detection was set to 5 STDs. The
number of neurons in each group is shown in brackets.

doi:10.1371/journal.pcbi.1004252.g002
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oscillatory rate function)

SrT ðf Þ ¼
r0 þ r0m sincð2f0TÞ þ r0

2T sinc2 ðfTÞ þ r0
2Tm sincðfTÞ sinc½ðf � f0ÞT�

þ r0
2Tm sincðfTÞsinc½ðf þ f0ÞT� þ r0

2Tm2

4
sinc2½ðf � f0ÞT�

þ r0
2Tm2

4
sinc2½ðf þ f0ÞT� þ

r0
2Tm2

2
sinc½ðf � f0ÞT�sinc½ðf þ f0ÞT�

ð3Þ

Fig 3. Factors determining the spectral peakmagnitude. (A) Effect of the rate modulation (m) in different base firing rates (r0) over a fixed recording period
(T = 1 minute). The solid lines indicate the mean SNRs; the shaded areas indicate ±1 STD of the SNR. (B) A squared fitting function for the SNR slopes (R2 = 1,
p <0.001). (C) Effect of the recording period duration (T) in different firing rates during a fixed firing modulation (m = 0.25). (D) A square root fitting function for the
SNR slopes (R2 = 0.99). (E-F) The detection of a significant peak (SNR>5) is affected by the rates for different (E) rate modulations and (F) recording durations.

doi:10.1371/journal.pcbi.1004252.g003
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The term sinc(fT) decays as 1/T. Thus, for large enough values of T, most of the sinc terms
will decay (e.g., for oscillations at 12 Hz, sinc(2 f0 T) is negligible within a few seconds of re-
cordings), except for the case when the frequency term inside the sinc is zero (i.e. f-f0 = 0), and
then sinc(0) equals 1 for every T. Consequently, the formulation may be simplified for the case
of the base frequency (f = f0); i.e., the peak power, to:

SrT f ¼ f0ð Þ ¼ r0 � 1þ r0Tm
2

4

� �
ð4Þ

And for all other frequencies (f 6¼ f0); i.e., the baseline power, to:

SrT ðf 6¼ f0Þ ¼ r0 ð5Þ

The magnitude of the peak power and its relation to the baseline power are dependent on
multiple factors; namely r0, T, m. Thus, a measure that is independent of subjective properties
is required which we term the modulation index (m̂). This measure can be extracted from the
simplified equation of the peak power (Eq 4)

m̂ ¼ j 2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŜrT

ðf ¼ f0Þ � r̂0

q
r̂0

ffiffiffiffi
T

p j ð6Þ

This equation enables the extraction of the modulation index for any frequency. When
there is a real underlying oscillation in that frequency, the outcome of the equation will be the
described modulation index. However, when there is no underlying oscillation in that frequen-
cy, the result will tend to be zero, as the value of SρT(f 6¼ f0) approaches r0, as shown in Eq 5.
Through this measure, we can reconstruct the rate function of an inhomogeneous Poissonian
oscillatory spike train (Fig 4A, top). First, the power spectrum is estimated, and the peak power

is extracted (Fig 4A, middle). Then, by using the estimated peak power (ŜrT
f ¼ f0ð Þ), the

mean firing rate (r̂0) and the total recording time (T), the modulation index is extracted, and

the estimated rate function (l̂ðtÞ) can be fully described (Fig 4A, bottom).
We calculated the modulation index for the simulation described above. For each of the

1000 generated spike trains we calculated the mean peak power, corrected it for comparison
with Welch0s estimator, which is a common method for estimating the power spectrum, (see
methods: correction for the power estimated by Welch's method), and used it for the calculation
of the modulation index. Comparison of the estimated modulation and the original modula-
tion demonstrated that the modulation index was constant across a wide range of parameters
over the simulated data (Fig 4B). The significance level for detecting oscillatory neurons using
the modulation index depends on the firing rate, and is defined as the mean result for the mod-
ulation index of zero at a specific firing rate + 2 standard deviations, as revealed by the simula-
tions. The results of the detection of oscillatory neurons using the modulation index indicate
that it is dependent on the baseline rate, such that the detection is better for higher firing rates
(Fig 4C). For example, when the modulation is 0.4, and the required detection probability is
80%, the firing rate should be higher than 15 spikes/s. However, for all firing rates, the detec-
tion using the modulation index was better than the detection using the spectral peak (Fig 4D).
We applied the modulation index to the recordings from the GPi of the Parkinsonian NHP
(Fig 4E) and obtained a constant modulation index (m̂ ¼ 0:23� 0:13 mean ± SD). In our
experimental dataset, 98 neurons were modulated; i.e., had a modulation index greater than
zero, and 78 of these were significant, according to the aforementioned significance test. The
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Fig 4. Reconstruction of the rate modulation index. (A) Reconstruction of the rate function of a single GPi neuron. Top—1 second from the neuron's spike
train. Middle—power spectrum of the spike train, presenting a peak at ~14 Hz. Bottom—the reconstructed rate function l̂ ðtÞ. (B) The analytically
reconstructed rate modulation index (m̂ ), as a function of the estimated baseline firing rate (̂r 0). The solid lines indicate the mean estimated modulation; the
shaded areas indicate ±1 STD of the reconstructed modulation, and the dashed line indicates the original modulation. (C) The modulation index detection.
The significance level was set according to the simulation results in B; i.e., the mean result for the modulation index of zero at a specific firing rate + 2 STDs.
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results for all neurons revealed that the oscillation modulation was independent of the firing
rate (R2 = 0.02, p>0.1), unlike the results obtained using the power spectrum (Fig 2B).

The modulation index was derived above for an inhomogeneous Poisson spike train where
the power spectrum exhibits equal power in all frequencies except for the base frequency. How-
ever, real neurons deviate from the Poisson model, primarily as a result of the refractory period.
Refractoriness prevents the neuron from firing two successive spikes within a short interval,
and thus the spike train is never a true Poisson process. In the case of an oscillatory spike train,
refractoriness distorts the oscillation, and the modulation appears to be smaller than the real
modulation of its rate function (Fig 5A). This occurs due to the larger effect of the refractory
period around the peak of the oscillation as more spikes are expected at that time. This under-
estimation of the modulation index is more prominent for high firing rates due to the increased
effect of the refractory period (Fig 5B). The modulation index can however be corrected to ac-
commodate for the refractory period (see methods). The correction procedure reconstructs the
modulation index (m̂p) of the rate function that will result in the analytically calculated modu-

lation index, which is smaller than expected as a result of the refractory period, and thus ex-
tracting the "true" modulation of the driving rate function (Fig 5C). We applied this correction
to GPi spike trains. This resulted in higher modulation index values (m̂p ¼ 0:35� 0:12

mean ± SD) that are independent from the firing rate (R2 = 0.0005, p>0.5) (Fig 5D). The per-
centage of significantly modulated neurons (97/229, 42%) was significantly larger than the per-
centage of neurons that were identified as significantly oscillatory by the SNR measure (64/229,
28%) (x2 test, p< 0.01).

The detection of oscillatory activity depends on a critical experimental factor—the total re-
cording duration (T). This factor must be set prior to the experiment itself to avoid a case of
failed detection due to the experiment0s time constraint (Fig 3F) rather than an actual lack of
oscillations. The analogous analytic SNR is defined as:

SNRðf Þ ¼
Ð T

0
lðtÞe�i2pftdtÐ T

0
lðtÞdt ð7Þ

And for f = f0:

SNRðf ¼ f0Þ ¼

½r02T2sinc2 ðf0TÞþ

r0
2T2m sincðf0TÞ þ r0

2T2m sincðf0TÞsincð2f0TÞ þ r0
2T2m2

4
þ

r0
2T2m2

4
sinc2ð2f0TÞ þ

r0
2T2m2

2
sincð2f0TÞ �=

½r0T þ r0Tm sincð2f0TÞ�

ð8Þ

And for large enough T:

SNR f ¼ f0ð Þ ¼ r0Tm
2

4
ð9Þ

(D) Comparison of the difference between the detections by the modulation index and the spectral peak. (E) Reconstruction of the modulation index of GPi
neurons. The results are shown for 98 (of 229) neurons that had a modulation index greater than zero (R2 = 0.02, p > 0.1).

doi:10.1371/journal.pcbi.1004252.g004
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The expected analytic SNR and the numerical estimated dSNR are similar, so we can replace

the analytic SNR with the desired dSNR, such that:

dSNR ¼ r̂0Tm̂
2

4
ð10Þ

This equation is true when no windows are used. When using Welch's method, the SNR
must be multiplied by the root of the number of windows used (seemethods: effect of the

Fig 5. Correction of the modulation index for deviations from the Poissonmodel. (A) A short segment (0.5 s) taken from: Top—an oscillatory rate
function (f0 = 12 Hz, r0 = 60 sp/s andm = 0.5). Middle—an example of a Poisson generated spike train from this rate function, without refractory period.
Bottom—an example of a Poisson generated spike train with refractory period of 2 ms. The red lines in the middle spike train indicate the missing spikes in
the bottom spike train, due to the refractory period. (B) The analytically reconstructed modulation index (m̂ ), as a function of the estimated baseline firing rate
(̂r 0), for spike trains with refractory period. The solid lines indicate the mean estimated modulation; the shaded areas indicate ±1 STD of the reconstructed
modulation, and the dashed line indicates the original modulation. (C) The corrected modulation index (m̂p ) for the same spike trains in B. (D) Reconstruction
of the modulation index of GPi neurons after correction of the modulation index. The black line is the linear regression for all the neurons (n = 98, R2 = 0.0005,
p >0.5).

doi:10.1371/journal.pcbi.1004252.g005

Oscillations in Spike Trains

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004252 April 24, 2015 10 / 21



window size on the SNR), which is defined as:

Nwins ¼ T=wl ð11Þ
where wl is the window length, and Nwins is the number of windows used.

From this equation, the required time for significance of the dSNR is:

T̂ ¼ 16 �
dSNR2

wl � r̂02m̂4
ð12Þ

We calculated the required recording time for a window length of 1 second for various firing

rates, for a dSNR of 1 to 7 while the modulation was fixed at 0.25 (Fig 6A), and for a fixed dSNR
of 5 for various modulations (Fig 6B). High firing rates as well as high modulation index values
will result in a shortening of the required recording duration. In addition, setting the signifi-
cance of the SNR to lower values will shorten the required recording duration. Thus, for exam-
ple, for a GPi neuron with a mean firing rate of 75 spike/s and an estimated modulation index
of 0.25, less than half a minute of recording will suffice to detect a spectral peak with SNR of 5.
However, in order to detect a spectral peak with SNR of 7 for the same neuron, about 1 minute
of recording is necessary.

Discussion
Classical oscillation estimation methods for neuronal data represent the magnitude of oscillato-
ry activity in terms of elevated peaks in a specific frequency, as compared to the baseline de-
fined over other frequencies. In the first part of this study we quantified the dependence of the
magnitude of the spike train oscillation, as revealed by power spectrum estimation, on different
biological and experimental factors. We showed that in both simulated and experimental data,
the estimated magnitude of the oscillation depends highly on the mean firing rate of the spike
train. We used simulations to quantify this dependence and investigated the influence of these
factors on the detectability of oscillatory spike trains.

In the second part of this study, we introduced a novel method for assessing the oscillatory
nature of a spike train by calculating the modulation index of the oscillation. The modulation
index can be estimated on the basis of the mean firing rate, the total recording duration, and
the magnitude of the peak in the power spectrum, and provides an objective measure of the os-
cillation magnitude. We applied this measure to the simulated spike trains, and showed that
the measure produces a correct estimation over a wide range of biologically plausible parame-
ters. The application of this measure to experimental data recorded from GPi neurons in the
Parkinsonian NHP revealed that the modulation index is independent of the firing rate. We in-
troduced the corrections that need to be applied to the estimated power revealed by Welch's
method, to compare the index to the analytically calculated power. Furthermore, we presented
adaptations to the modulation index to account for deviations from the Poisson process as-
sumptions. Explicitly, we show its usage in an inhomogeneous Poisson process with an abso-
lute refractory period, which dramatically alters the spectrum of real neurons. Finally, we
proposed a practical method for estimating the recording time required to accurately detect os-
cillations in neurophysiological experiments.

The effect of the firing rate on the size of the spectral peak is dramatic. In the mammalian
brain, the range of firing rates between brain areas and neuronal types is considerable, and
even within a specific brain region and a specific neuronal type, the heterogeneity of firing
rates within the population is large. For example, the firing rates of the GPi neurons in the
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Parkinsonian NHP used in our dataset ranged from 25 spikes/s to over 100 spikes/s. Further-
more, the rate distribution can vary between behavioral states: in the normal state, firing rates
increase when attention is directed toward a stimulus [15] and changes in the firing rates of
hippocampal neurons occur as the result of experience [16]. Pathological conditions influence
firing rates as well, as shown in the firing rate changes throughout the basal ganglia over the
course of Parkinson's disease [17,18]. These differences consequently lead to a situation in
which identification of oscillations using the spectral peak may be difficult in some conditions,
and moreover, bias the comparison across different brain areas, neuron types and behavioral
states. Nonetheless, most studies do not take different firing rates into account when inferring

Fig 6. Estimating the required recording duration. Analytic results for the required recording duration, (A)
over different firing rates and for increasing SNR, with modulation of 0.25 and (B) over different firing rates
and for various modulations, calculated for a SNR of 5.

doi:10.1371/journal.pcbi.1004252.g006
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their spectral results. For example, previous studies of the Parkinsonian primate have shown
that there is a larger fraction of oscillating neurons as well as an increased magnitude of oscilla-
tions in the GPi relative to the globus pallidus externus (GPe) [14,19]. These studies neglected
to take the substantially different firing rates between the two brain areas during parkinsonism
into account: the mean firing rate of GPe neurons in the MPTP treated NHP is 45 spikes/s,
whereas the mean firing rate of the GPi neurons is 75 spikes/s [19]. According to our simula-
tion results (Fig 3E), the detection of significant oscillations in neurons with a realistic modula-
tion index of 0.25 and a firing rate of 45 spikes/s is less than 20%, whereas when the firing rate
is 75 spikes/s the detection is about 80%. Thus, the conclusions relating to different oscillatory
activities may be derived from the firing rates themselves and not from the oscillatory nature of
the neurons.

The firing rate effect on the spectral peak is also a major caveat in the interpretation of the
oscillatory nature of MUA. Previous studies have reported that MUA appears to be more oscil-
latory than single-unit activity (SUA) [14,20]. However, this phenomenon is affected to a large
extent by the higher firing rate of the MUA that contains more than one spike train, such that
the comparison between the spectral peak of SUA and MUA is problematic and may lead to a
misinterpretation of the results.

An additional factor that biases the spectral peak estimation considerably is not dependent
on the neuronal properties but rather on an experimental property: the duration of the record-
ing. As the total recording duration increases, the SNR will increase. Yet, most studies are not
aware of this bias when comparing the results of spectral analyses of recordings with different
durations. Moreover, in some situations, the duration of the recording can be extremely short,
such as recordings in the operation room which can only yield a few seconds of recording [20],
and thus are not long enough for the detection of a spectral peak despite an underlying oscil-
latory rate function. Even worse, transient changes in the oscillatory activity of a neuron in re-
sponse to a behavioral task might prevent the detection of a spectral peak which is unique to
the transient period. Such transient changes occur for instance in the gamma frequency in rela-
tion to movement [1].

Thus, a measure quantifying oscillations is needed that goes beyond the identification of
significant spectral peaks. Several methods for the estimation of oscillatory activity in spike
trains have been suggested based on the auto-correlation function [10,21] and analysis of the
power spectrum [7]. As the spectrum may be defined as the Fourier transform of the auto-cor-
relation function (Wiener-Khinchin theorem), these two groups of methods are biased. The
bias could be visualized by the auto-correlation function of the spike trains as well as in its
power spectrum (S1A–S1F Fig). As in the power spectrum, the SNR of the auto-correlation
function is dependent on the firing rate, such that when the firing rate is higher, the oscillatory
nature of the spike train is more evident in the auto-correlation function, while during low fir-
ing rate, the oscillation cannot readily be seen (S1G Fig). In order to overcome the bias in the
auto-correlation, one of the methods defines an oscillatory score that is less sensitive to the fir-
ing rate [10] but still depends on the frequency band, where higher bands yield higher scores.
Other methods have dealt with the problem of finite recording durations by applying correc-
tions to the confidence limits of the spectral estimations [7] but have not handled the different
firing rates explicitly.

The major drawback in the standard methods of assessing spike train oscillations were ad-
dressed in consecutive steps within this manuscript. Initially, we quantified the factors that bias
the magnitude of the spectral peak. Next, we introduced a measure that overcomes these fac-
tors, and leads to a reliable detection of oscillations and a direct estimation of the strength of
oscillations: the modulation index. This method is simple and fast, and can be customized to
accommodate the size of the window and the spectral smoothing applied prior to the spectral
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estimation. Finally, a practical method for estimating the required recording duration was pro-
posed, based on the mean firing rate, the evaluated modulation index and the desirable SNR. In
order to evaluate the mean firing rate and the modulation index, a few short preliminary re-
cordings can be performed, and these two parameters can be grossly assessed. The significance
levels for the SNR have to be chosen, and then, the required recording duration may be esti-
mated. In other situations, where the recording duration is fixed, and cannot be adjusted, the
experimenter should be aware of the limitations of detecting oscillations from the recordings
and use our analytic results to estimate the fraction of unidentified oscillatory neurons.

Throughout most of this study we assumed that the spiking activity of single neurons fol-
lows a Poisson distribution [22–24], i.e. they fire stochastically and the probability of generat-
ing a spike at a certain time depends solely on the underlying rate function. In real neurons,
there are deviations from the Poisson model. The most prominent deviation, the refractory pe-
riod, was addressed in this study by correcting the estimation of the modulation index. The
correction procedure is based on information extracted from the given spike train, and on the
underlying rate function, including the deviation from the Poisson process. The process nu-
merically finds the original modulation index of the rate function that results in the modulation
index calculated analytically from the recorded data. For the case of refractory period, we mod-
eled the rate function with an absolute refractory period following a spike. However, in some
unique cases, when the refractory period causes the oscillation frequency peak to be too small,
which results in a modulation index of zero, the correction procedure will not be able to reveal
the original modulation. In this situation, a shuffling procedure on the first order ISI's could
compensate for the distortion of the spectrum caused by the refractoriness and lead to an in-
creased accuracy of the peak detection [25]. The general rate function model could be expand-
ed to accommodate for other deviations from the Poisson model, such as relative refractory
period and bursting activity; i.e., an elevated firing probability immediately after the
refractory period.

In conclusion, the modulation index can provide an objective quantification of spike train
oscillations, and thus an unbiased comparison across brain regions, behavioral states and sepa-
rate recordings with different recording lengths. Using this quantification method can expand
our understanding of neural oscillations, and their role in normal and pathological states.

All the code required for the estimation of the modulation index and the required recording
time is available as custom MATLAB code (compatible with versions 2007B-2014A) on our
website: http://neurint.ls.biu.ac.il/software/

Methods

Ethics statement
The neuronal recordings were taken from four Cynomologus monkeys (Macaca Fascicularis),
that underwent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injections leading to
a stable Parkinsonian state. The monkeys’ water and food consumption and weight were
checked daily and their health was monitored by a veterinarian. All procedures were in accor-
dance with the National Institutes of Health Guide for the Care and Use of Laboratory Ani-
mals, Bar-Ilan University Guidelines for the Use and Care of Laboratory Animals in Research
and the recommendations of the Weatherall Report. All procedures were approved and su-
pervised by the Institutional Animal Care and Use Committee (IACUC). These procedures
were approved by the National Committee for Experiments on Laboratory Animals at the
Ministry of Health (permit number BIU150605). Full details of the experimental protocol ap-
pear elsewhere [14,26].
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Spike train simulations
The spike trains were simulated with a resolution of Δt = 1 ms. The spike trains were modeled
as an inhomogeneous Poisson process, whose rate is modulated by a 12 Hz cosine function.
Spike trains with refractory period were modeled by setting the instantaneous firing rate to
zero for 2 ms following a spike.

Power spectrum
The power spectrum was estimated based on Welch's method [27] for spectral estimation
using non-overlapping segments. In all spectral calculations, the 1000 bin segments (seemeth-
ods: Effect of the window size on the SNR) were windowed using a Hamming window. The
power spectral densities of each segment were calculated, and were then averaged. The bin size
(Δt) of both the experimental and simulated data was 1 ms, leading to a spectral resolution of 1
Hz and a maximal frequency of 500 Hz.

Power spectrum of a finite inhomogeneous Poisson process
The following is based on the general formulation by Pinhasi and Lurie [28]: Let's consider a
Poisson process of occurring delta functions, with a non-constant and time dependent rate λ
(t). A portion of the process realization in the time interval [0 T] is given by the finite summa-
tion:

rTðtÞ ¼
XkðtÞ

i¼1
dðt � tiÞ ð13Þ

where ti are the successive firing instances, k(t) is a random variable that counts the number of
delta functions occurring during the time interval T, with an expected value of:

kðTÞ ¼
ðT

0

lðtÞdt ð14Þ

The event appearance ti is an independent random variable with the probability density
function:

f ðtiÞ ¼
lðtiÞ
kðTÞ ¼

lðtiÞÐ T

0
lðtÞdt ð15Þ

The Fourier transform of ρT(t) is:

rTðf Þ ¼
XkðTÞ

c¼1
ei2pftc ð16Þ

Oscillations in Spike Trains

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004252 April 24, 2015 15 / 21



The power spectral density can be calculated:

SrT ðf Þ ¼
jrTðf Þj2

T
¼ 1

T

XkðTÞ
c¼1

XkðTÞ
c0¼1

ei2pf ðtc� tc0 Þ

¼ 1

T

XkðTÞ
c¼1

1 þ
XkðTÞ
c¼1

XkðTÞ
c0 6¼c

ei2pf ðtc� tc0 Þ

24 35
¼ 1

T
fkðTÞ þ kðTÞ½kðTÞ � 1� � ei2pf ðtc� tc0 Þg

¼ 1

T
fkðTÞ þ ½k2ðTÞ � kðTÞ� � ei2pf ðtc� tc0 Þg

ð17Þ

In a Poisson process: sk
2 Tð Þ ¼ k Tð Þ, and thus, the second moment is:

k2ðTÞ ¼ ½kðTÞ�2 þ sK
2ðTÞ ¼ ½kðTÞ�2 þ kðTÞ: ð18Þ

Inserting this in Eq 17 yields:

SrT ðf Þ ¼
1

T
fkðTÞ þ ½kðTÞ�2 � ei2pf ðtc� tc0 Þg ð19Þ

The statistical average:

eþi2pftc ¼ ðe�i2pftc0 Þ� ¼
ðT

0

eþi2pftc f ðtcÞdtc ¼
1

kðTÞ

ðT

0

lðtcÞeþi2pftcdtc ð20Þ

Leading to the power spectrum formulation as:

SrT ðf Þ ¼
1

T

ðT

0

lðtÞdt þ j ðT

0

lðtÞe�i2pftdtj2" #
ð21Þ

where the first term in brackets is the statistical average of the number of events over T, and the
second term is the power spectrum of the instantaneous rate function λ(t) in the interval [0 T].

Power spectrum of an inhomogeneous Poisson process with an
oscillatory rate function
For a rate function defined as:

lðtÞ ¼ r0 � ð1þm � cosð2p � f0 � tÞÞ ð22Þ

The expected number of spikes within a period T is:

kðTÞ ¼
ðT

0

lðtÞdt ¼ r0T½1þm sincð2f0TÞ� ð23Þ
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The Fourier transform of the instantaneous rate in the time interval [0 T] for a large T is:

Ð T

0
lðtÞe�i2pftdt ¼ Ð T=2

�T=2
½r0 þ r0m cosð2pf0tÞ�e�i2pftdt

¼
Ð T=2

�T=2
r0e

�i2pftdt þ
Ð T=2

�T=2

r0m
2

e�i2pðf�f0Þtdt þ
ðT=2

�T=2

r0m
2

e�i2pðfþf0Þtdt

¼ r0TsincðfTÞ þ
r0mT
2

sinc½ðf � f0ÞT� þ
r0mT
2

sinc½ðf þ f0ÞT�

ð24Þ

And:

j Ð T

0
lðtÞe�i2pftdtj2 ¼ r0

2T2sinc2 ðfTÞ þ r0
2T2m sincðfTÞsinc½ðf � f0ÞT�

þ r0
2T2m sincðfTÞsinc½ðf þ f0ÞT� þ

r0
2T2m2

4
sinc2½ðf � f0ÞT�

þ r0
2T2m2

4
sinc2½ðf þ f0ÞT� þ

r0
2T2m2

2
sinc½ðf � f0ÞT�sinc½ðf þ f0ÞT�

ð25Þ

Resulting in the power spectrum of the inhomogeneous Poisson process:

SrT ðf Þ ¼
1

T
½
ðT

0

lðtÞdt þ j
ðT

0

lðtÞe�i2pftdtj2� ¼

r0 þ r0m sincð2f0TÞ þ r0
2Tsinc2 ðfTÞ þ r0

2Tm sincðfTÞsinc½ðf � f0ÞT�

þ r0
2Tm sincðfTÞsinc½ðf þ f0ÞT� þ r0

2Tm2

4
sinc2½ðf � f0ÞT�

þ r0
2Tm2

4
sinc2½ðf þ f0ÞT� þ

r0
2Tm2

2
sinc½ðf � f0ÞT�sinc½ðf þ f0ÞT�

ð26Þ

Correction for the power estimated by Welch's method
The power as estimated by Welch0s method, which calculates the average of the spectra of win-
dowed segments, needs to be scaled to the analytically calculated power; i.e., the power calculat-
ed for the signal as a single non-windowed segment. To do so, Welch's power needs to be
multiplied first by the sampling frequency, and then divided by 2. Then, a correction due to the
lower spectral resolution of Welch's power needs to be made: first multiply the power by the
number of windows, and then subtract from it the baseline power multiplied by the number of
windows minus 1. Finally, a correction due to the windowing needs to be applied: the correc-
tion term is the mean of the window multiplied by the length of the window, and then divided
by the power of the window. This is expressed in the final formulation:

Peakanalytic ¼ PeakWelch �
Fs
2

� �
� Nwins � Nwins � 1ð Þ � r0

� �
� mean wð Þ � wl= w

0 � w� �	 
 ð27Þ

where Fs is the sampling frequency, Nwins is the number of windows used, w is the window,
and wl is the length of the window.
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Correction of the modulation index for deviations from the Poisson
model
The deviation of the spike train from the Poisson model results in an incorrect estimation of
the modulation index. A correction process could compensate for this: (1) The firing rate of
the spike train assuming a true Poisson process (r̂p) is calculated using the recorded spike

train. (2) An oscillatory rate function is generated of length T and baseline rate which is set to
r̂p . The modulation of the rate function (mp) is set to the analytically calculated modulation

index (m̂Þ of the spike train. (3) From this rate function, multiple new Poisson-like spike
trains are generated, including the given deviations from the Poisson model. The modulation
index measure of each spike train is estimated (m̂s), and the mean modulation index is calcu-

lated (m̂s ). (4) The mean simulated modulation index is compared to the original modulation
index of the spike train. If the simulated modulation index is different from the original mod-

ulation index (m̂s 6¼ m̂), increase (in the case of an underestimation) or decrease (in the case
of an overestimation) the modulation of the rate function (mp), and repeat step 3. If the simu-

lated modulation index is similar to the original modulation index (m̂s ¼ m̂) within the re-
quired error boundaries, the Poisson equivalent modulation index is the modulation of the
rate function (m̂p ).

Correction of the modulation index for the refractory period
The correction process was explicitly implemented to compensate for the underestimation of
the modulation index arising from the refractory period: (1) The firing rate of the spike train
assuming no refractory period is calculated using the properties of the recorded spike train: the
number of spikes (Nspikes), the recording duration (T) and the refractory period (τref), which
could be extracted from the interspike interval (ISI) histogram:

r̂p ¼ Nspikes=ðT � tref � NspikesÞ ð28Þ

(2) The oscillatory rate function is generated of length T using a baseline rate (r̂p) and the mod-

ulation index (m̂Þ calculated from the spike train. (3) From this rate function, 100 new Poisson
spike trains are generated using a refractory period of τref, and their mean modulation index is

calculated (m̂s). (4) If the simulated modulation index is smaller than the original modulation

index (m̂s < m̂), increase the modulation of the rate function (mp), and repeat step 3. If the

simulated modulation index is similar to the original modulation index (m̂s � m̂), the cor-
rected modulation index is the modulation of the rate function (m̂p).

Effect of the window size on the SNR
The window size must be chosen as a function of the resolution of the frequency of the under-
lying oscillation. When the frequency of the oscillation is stable and tightly locked to a specific
frequency, a longer window will yield a more precise power spectrum (Fig 7A). However, when
the frequency jitters, using a window with a resolution smaller than the jitter size will not lead
to a more precise spectrum, but rather to a spread of the power over the entire frequency jitter
range (Fig 7B). Real neurons are not perfect oscillators in a single precise frequency, but instead
are oscillatory within a jittered frequency range, which in the GPi of the Parkinsonian NHP is
about 1 Hz (Fig 7C), justifying a window size of around the jitter size (a window length of 1000
leads to a 1Hz resolution). The length of the window affects the SNR, such that the SNR grows

like
ffiffiffiffiffiffiffiffiffi
Nwins

p ¼
ffiffiffi
T
wl

q
(Fig 7D).
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Supporting Information
S1 Fig. Reflection of the oscillatory activity in the auto-correlation function and the ISI his-
togram. Normalized power spectrum of 5 minutes simulated spike train generated from an os-
cillatory rate function (f0 = 12 Hz,m = 0.5), when the base rate is (A) 5 sp/s, (B) 15 sp/s, (C) 30
sp/s. (D-F) The auto-correlation function of the same spike trains as in A-C. (G) The SNR of

Fig 7. Selection of window size for the calculation of the power spectrum. (A) Power spectrum of a Poisson spike train generated from a pure oscillatory
rate function (f0 = 12 Hz, r0 = 40 sp/s andm = 0.5). Left, power spectrum calculated with a resolution of 1 Hz. Right, power spectrum with a resolution of 0.1
Hz. (B) Power spectrum of a Poisson spike train generated from a jittered oscillatory rate function (f0 = 11.5–12.5 Hz, r0 = 40 sp/s andm = 0.5). Left, 1 Hz
resolution. Right, 0.1 Hz resolution. (C) An example of a single GPi neuron showing a peak with a width of ~1 Hz. (D) The effect of window size and resolution
in the power spectrum at different recording durations during a fixed firing rate and a fixed firing modulation. The SNR increases on a scale of

ffiffiffiffiffiffiffiffiffiffi
Nwins

p
. The

dotted black lines indicate the square root fit.

doi:10.1371/journal.pcbi.1004252.g007

Oscillations in Spike Trains

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004252 April 24, 2015 19 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004252.s001


the peak in the auto-correlation as a function of the mean firing rates. The SNR is defined as
the number of STDs from the mean of the auto-correlation function to the first peak near the
zero point. The circles indicate the SNR of the peak shown in examples D-F, and the solid line
indicates the fitted linear function. (H-J) The first order ISI histograms of the same spike trains
shown in A-C. The dashed vertical lines indicate the 1/f0 ISI.
(DOCX)
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