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The Albin-DeLong ‘box and arrow’ model has long been the
accepted standard model for the basal ganglia network.
However, advances in physiological and anatomical research
have enabled a more detailed neural network approach.
Recent computational models hold that the basal ganglia use
reinforcement signals and local competitive learning rules to
reduce the dimensionality of sparse cortical information.
These models predict a steady-state situation with diminished
efficacy of lateral inhibition and low synchronization. In this
framework, Parkinson’s disease can be characterized as a
persistent state of negative reinforcement, inefficient
dimensionality reduction, and abnormally synchronized basal
ganglia activity.
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Abbreviations
BG basal ganglia
CM-Pf centro–median parafascicular complex
GABA γ-amino butyric acid
GPi globus pallidus, internal segment
GPe globus pallidus, external segment
LTP long-term potentiation
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride
PD Parkinson’s disease
SNc substantia nigra pars compacta
SNr substantia nigra pars reticulata
STN subthalamic nucleus
TANs tonically active neurons

Introduction
The basal ganglia (BG) are a complicated interconnected
network of neuronal elements that process motor, cogni-
tive and motivational (limbic) cortical information [1,2•].
The clinical manifestations of neuronal disorders of the
BG, including hypokinetic movement disorders such as
Parkinson’s disease (PD) and hyperkinetic movement 
disorders, such as Hemiballismus and Huntington’s disease,
suggest that the BG use this multi-dimensional cortical
information to generate, or to control, action. Many 
computational models of the BG function have been
developed (see reviews in [3,4]). These models have 
generated testable hypotheses, and enable greater insights
into the physiology and pathophysiology of the BG and
human diseases. In this review, we use this background to
construct a better understanding of normal and pathological
information processing in the BG cortical circuits.

The classical ‘box and arrow’ view of the BG
Information processing in any neuronal system is bound by
the underlying anatomical substrate. One of the first 
modern models (the Albin-DeLong model [5,6]) of BG
function was inspired by the dominant anatomical connec-
tions of BG nuclei and their neurochemistry. A major
pathway in the BG circuitry leads from most cortical areas
to the striatum. Subsequent projections link striatal 
neurons to the BG output stage (i.e. the globus pallidus,
internal segment [GPi] and the substantia nigra, pars 
reticulata [SNr], for simplicity referred to hereafter as GPi).
The BG control — via γ-amino butyric acid (GABA)ergic
inhibitory projections of GPi neurons — the activity of the
excitatory thalamo–cortical networks (Figure 1a). The
Albin-DeLong model assumes two segregated feed-
forward pathways from the striatum to the GPi. The direct
pathway is made up of direct GABAergic projections to the
GPi. The indirect pathway connects a different population
of striatal neurons to the GPi, via the globus pallidus,
external segment (GPe) and the subthalamic nucleus
(STN). The net effect of the striatum over the GPi is
inhibitory for the direct pathway, and excitatory (due to
double inhibition) for the indirect pathway. Because of the
inhibitory pallido–thalamic projections, the direct pathway
is part of a positive feedback loop connecting the
cortex–striatum–GPi back to the frontal cortex, whereas
the indirect pathway is part of a negative feedback loop.
Finally, dopamine modulates the activity of striatal 
neurons that give rise to the direct and indirect pathways,
by D1-receptor-mediated excitation and D2-receptor-
mediated inhibition, respectively (Figure 1a). Thus,
dopamine increases the gain of the positive trans-cortical
BG loop and decreases the gain of the negative loop, even-
tually promoting activation of the frontal cortex and action. 

Most students of BG anatomy agree that the BG circuitry
can be divided into three partially overlapping anatomical
domains: the somato–motor domain, the associative–cogni-
tive domain and the limbic domain. However, the degree
of overlap and convergence in the BG is still under discus-
sion [7,8]. The above description of direct and indirect
pathways can therefore be applied to a segregated (e.g.
motor) basal ganglia loop [7] or to the entire network [8].

The action–selection paradigm and lateral
inhibition models of the basal ganglia
The assumption of separate direct–inhibitory and 
indirect–excitatory striato–pallidal pathways leads to two
different views of the BG. The first assumes that the two
pathways converge on the same pallidal neurons, therefore
enabling temporal scaling of their activity. The second
view assumes that the two pathways project to different
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populations of pallidal neurons. When actions or 
voluntary movements are generated by cortical mecha-
nisms, the indirect pathway acts broadly, mainly through
the divergent STN–GPi projections [9], to inhibit competing
motor programs. Simultaneously, the direct pathway 
focally removes the inhibition from the desired movement
or action [10,11]. 

The BG also uses surround or lateral inhibition to generate
focal activation. Most BG neurons form extensive collateral
connections within their nuclei of origin [12•]. Because
both striatal and GPi neurons use GABA as their main 
neurotransmitter, the collateral system serves as a lateral
inhibition network. Moreover, the inhibitory parvalbumin
positive GABAergic interneurons provide another efficient
substrate for lateral inhibition in the striatum [2•,13].
Indeed, many models of BG function have been influ-
enced by this strong anatomical lateral connectivity, and
assume strong functional mutual inhibition between 
striatal neurons or domains [14••]. 

Alterations in discharge rate of BG neurons
and pathophysiology of movement disorders
Despite the arguments regarding the precise nature of BG
processing, the Albin-DeLong ‘box and arrow’ model has
generally been accepted as the core model for BG 
function. The main achievement of this model lies in
accounting for pathophysiological mechanisms of both
hypokinetic and hyperkinetic movement disorders. The
model predicts an enhanced tonic inhibition of the 
thalamo–cortical circuitry in hypokinetic disorders and a

diminished amount of inhibition of these circuits in hyper-
kinetic disorders [6]. The scaling versus the focusing
schools of thought are usually incorporated into the 
model, which suggests that hypokinetic and hyperkinetic 
movement disorders represent over- or under-activity of
neuronal circuits performing more or less scaling or focusing,
respectively [15••]. The model has received apparent 
support from the findings that STN and GPi firing rates
are increased in PD [6]. Moreover, it has been shown that
inactivation of these nuclei can ameliorate the motor
symptoms in Parkinsonian animals [16] and human
patients [17].

The BG network is more complicated than the
BG models
Although many experimental findings are in agreement
with the Albin-DeLong model, accumulating evidence
challenges this classical view in several respects. First,
neurons in the BG show extensive collateral connectivity
[12•] and additional internal and external (e.g. to brainstem
nuclei) projections [2•] that are incompatible with the sim-
plified classical view. Second, recent studies indicate that:
D1 and D2 receptors co-localize on striatal neurons [18••];
all striatal neurons projecting to GPi also project to GPe
[2•,19]; and D1/D2 activation cannot simply be described
as purely excitatory or inhibitory, respectively [20•]. Third,
lesions of the GPi not only ameliorate the hypokinetic clin-
ical characteristics of PD, but also alleviate hyperkinetic
disturbances; and lesions in the thalamus do not lead to
PD-like motor symptoms [21]. Fourth and finally, physio-
logical studies do not reveal strong inhibition between BG
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Figure 1

The ‘box and arrow’ models of BG circuitry.
(a) The Albin-DeLong model of BG circuitry.
The figure provides a schematic outline of the
basic circuitry and the transmitters in the BG.
Black lines represent glutamatergic
connections, gray lines represent GABAergic
connections and dashed gray lines represent
dopaminergic connections. Lines ending in
squares represent inhibitory connections
(GABA, D2 receptors), and lines ending in
triangles show excitatory connections
(glutamate, D1 receptors). (b) Less schematic
‘box and arrow’ diagram of BG circuitry. Lines
ending in circles represent modulatory
dopaminergic connections. Str, striatum; 
s, striosomes; PPN, pedunculopontine
nucleus; SC, superior colliculus; in:
parvalbumin positive GABAergic interneurons.
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neighboring neurons [22,23••] as predicted by recent
expansions of the Albin-DeLong model (e.g. action–selec-
tion or lateral inhibition models).

A possible solution to the accumulating new physiological
and anatomical data is to incorporate these new findings
into a more complex model with more boxes and arrows
(Figure 1b). However, the complex anatomical and physi-
ological structure of each of the neurons in the BG network
calls for a new approach that will use the recent advances
of neural computation methods. 

Sparse information is transmitted from the
cortex to the BG
The mutual inhibition models and the focusing
(action–selection) models predict strong lateral inhibitory
interactions between BG neurons. These inhibitory
processes should be characterized by inhibitory postsynaptic
potentials, and by negative correlation or suppression of
firing of one neuron by the firing of another neuron in 
multiple neuron recordings. This prediction, however, has
not been borne out by physiological intracellular studies.
No evidence has been found for functional synaptic inter-
actions between striatal projection neurons ([22], but see
also [24]). Similarly, multiple neuron recordings have failed
to reveal correlations between the spiking activity of
simultaneously recorded pallidal neurons [23••]. 

A possible reason for the lack of BG correlation is sparse 
cortico–BG connectivity. The cortico–striatal–pallidal pathway
is anatomically characterized by a high degree of numerical
reduction. The number of striatal neurons is two orders of
magnitude less than the number of cortical neurons project-
ing to the striatum, and an additional reduction of the same
magnitude occurs from the striatum to the GPi [8,25].
Recent studies indicate that the anatomy of the cortico–stri-
atal pathways is heterogeneous and discontinuous, and that
individual cortical foci give rise to multiple and separate sites
of striatal innervation [26–28]. Quantitative analysis of single
neuron tracing reveals a low degree of cortical input sharing
by nearby striatal neurons [29,30••]. Moreover, the
cortico–striatal physiological message is not a simple read-out
of the cortical state [31••]. Finally, many recent anatomical
and physiological studies concur that the main circuits pass-
ing through the BG remain separate under normal conditions
[7,23••,32]. Thus, despite the huge numerical reduction from
the cortex to the GPi, GPi activity probably represents an
optimally compressed (uncorrelated) version of distinctive
features of cortical information.

Reinforcement learning models of the BG
Most brain dopamine is generated by midbrain dopaminergic
neurons, projecting to the striatum. The central role of
dopamine in controlling motivation and learning has been
known for many years [33], however, most ‘box and arrow’
models of the BG have overlooked the relationships
between dopamine and learning in normal BG function.
The outstanding series of physiological experiments by

Schultz (see [34]) revealed that the dopaminergic signal is
best characterized as relating to the differences between the
animal’s predictions and reality. Thus, dopaminergic neurons
respond to perceived differences between predictions and
reality with an enhanced firing rate, which is shifted to the
earliest prediction of future reward. Furthermore, a 
suppression of firing occurs when a predicted reward fails to
occur. Tonically active neurons (TANs), probably the
cholinergic interneurons of the striatum, show similar
responses for predicted and unpredicted rewards [27]. This
behavior resembles that of the ‘critic’ in reinforcement 
temporal delay learning models [35]. The temporal delay
learning models are based on the actor–critic architecture.
The actor (controller) provides a control signal to the envi-
ronment (controlled system) that provides a feedback signal
to the actor. The critic produces evaluative or reinforcement
feedback to the actor by observing the consequences of the
actor’s behavior on the environment. In a learning process,
the critic adjusts the actor’s behavior so as to maximize the
total amount of future rewards (reinforcements). The 
cortex–BG–cortex axis is therefore modeled as the ‘actor’
and the dopaminergic (and cholinergic) neurons as the 
‘critic’ or the provider of the teaching signal (henceforth the
reinforcement signal) [34,36]. 
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Figure 2

The reinforcement driven dimensionality reduction neural network model
of the main axis of the BG. The model is composed of a three-layered
feed-forward network simulating the cortico–striato–pallidal circuit with
lateral inhibitory connections at the intermediate (striatum) and output
(pallidum) layers. Neuronal layers that are not included in the current
model are shown as boxes. A reinforcement (dopaminergic) signal is
provided at the intermediate (striatal) layer. Arrowhead black connections
represent glutamatergic excitatory synapses, square-head gray
connections represent GABAergic inhibitory synapses and round-head
broken-line connections represent dopaminergic modulatory synapses.
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Actor–critic models predict that the reinforcement signal will
modulate synaptic transmission in the actor. Indeed, plastic
changes in the morphology of BG synapses occur after
dopamine depletion [37]. Physiological studies show that
both the dopaminergic [38,39••] and the cholinergic [40] 
signals modulate the access of cortical input to striatal 
projection neurons. Moreover, as predicted by reinforcement
learning models, BG neurons significantly change their 
discharge as a function of the prediction of future reward
[41,42•,43] and during different phases of learning [44]. 

Dimensionality reduction neural networks
Reinforcement learning models emphasize the position of
the BG in normal behavior; however, the role of the BG in
the pathophysiology of movement disorders has been 
overlooked. A model that combines most of the anatomical,
physiological and computational approaches cited above
has recently been suggested [45••] (Figure 2, and see
[14,46•] for related approaches). The model assumes that
the BG perform efficient dimensionality reduction [47,48]
and decorrelation of the large information space spanned
by the activity of the cortico–striatal neurons. Theoretical
studies demonstrate that neural networks can perform
such efficient coding using local cellular competitive learn-
ing rules [47]. In the BG case, inter-layer (cortico–striatal

and striatal–GPi) feed-forward connectivity is controlled
by Hebbian rules whereas lateral intra-layer inhibitory 
connectivity is controlled by anti-Hebbian rules (Table 1). 

According to this model, the BG dimensionality reduction
is affected not only by the statistical properties of the 
cortical patterns but also by their behavioral significance. 
This is achieved by a triple striatal synapse, in which the 
reinforcement (dopaminergic or cholinergic) signal controls the
feed-forward cortico–striatal Hebbian learning (Table 2).
Following presentation of novel input patterns or a change
in the reinforcement signal, the network (Figure 2) 
performs sub-optimal information compression and the
activity of the GPi neurons becomes correlated. This 
correlation causes an increase in the physiological efficacies
of the inhibitory lateral synapses (Table 1, anti-Hebbian
learning rule) and changes in the efficacies of the feed-
forward connections. These changes, in turn, result in
decorrelation of neuronal activity within the GPi. Thus,
decorrelation of BG activity is achieved by a dynamic
process and not by fixed sparse cortico–BG connectivity.
Moreover, the reinforcement signal causes the extraction
to become discriminative, performing better for reward
related inputs but not for unrelated events. Finally,
dopamine depletion — a negative reinforcement signal
from the perspective of striatal neurons — as in PD, 
substantially impairs the dimensionality reduction process.
The consequential modifications of the BG synapses
results in increased synchronization among BG neurons
[23••,49,50]. Conventional dopamine replacement therapy
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Table 1

Hebbian and anti-Hebbian learning rules.

Presynaptic and post- Synaptic efficacy
synaptic activity Hebbian learning Anti-Hebbian learning

Synchronous Increase Decrease

Asynchronous Decrease Increase

The table represents Stent’s modification of Hebb’s rule: synchronous
(or conjunctive) firing of the presynaptic and postsynaptic neurons
(within a 100–500 ms time window) increases the efficacy of the
synapse between these neurons in Hebbian learning and decreases the
efficacy of that synapse in anti-Hebbian learning. Non-simultaneous
(asynchronous) firing has opposite effects. In mathematical terms,
Hebb’s rule can be expressed as ∆wij = η•[xi•yj], where x and y are the
differences between the presynaptic and postsynaptic activity and their
respective averages, i and j are indexes of the presynaptic and
postsynaptic neurons, w is the synaptic efficacy (i.e. the probability of
the presynaptic neuron to induce action potentials in the postsynaptic
cell), wij ≥ 0 for excitatory synapses and wij ≤ 0 for inhibitory synapses,
and η is a scaling factor that regulates the learning rate. Physiologically
speaking, Hebbian learning ‘rewards a job well done’ and vice versa.
In an excitatory synapse, the desired effect is activation of the
postsynaptic cell by the presynaptic cell. Thus, a synchronous activation
causes an increase in synaptic efficacy. However, for an inhibitory
synapse the desired effect is a suppression of the activity of the
postsynaptic cell by the presynaptic activity. Therefore, conjunctive
activity of the presynaptic and postsynaptic neurons represents a
‘failure’ of the inhibitory synapse and the Hebbian learning rule causes a
mathematical increase in synaptic efficacy (e.g. from –100 to –50
arbitrary units of synaptic efficacy) that is equivalent to a physiological
decrease in the efficacy of the inhibitory synapse. Anti-Hebbian learning
causes a mathematical decrease (equal to a physiological increase) in
the efficacy of the inhibitory synapse following synchronous activation.
This increased physiological efficacy of inhibitory synapses can lead to
decorrelation of presynaptic and postsynaptic activity.

Table 2

Reinforcement-driven Hebbian learning rules.

Reinforcement signal Presynaptic and post- Synaptic efficacy
synaptic activity

Positive Synchronous Increase

Positive Asynchronous Decrease

Zero Synchronous No change

Zero Asynchronous No change

Negative Synchronous Decrease

Negative Asynchronous Increase

In a triple synapse (e.g. the cortico–dopaminergic–striatal synapse) the
changes in synaptic efficacy are influenced by both the reinforcement
signal and the presynaptic and postsynaptic activity. Mathematically,
the learning rule is expressed as ∆wij = η•[xi•yj], where x and y are the
cortex (presynaptic) and striatal (postsynaptic) activity (related to mean
activity), w is the synaptic efficacy of the cortico-striatal synapse
(wij ≥ 0), η is a scaling factor that regulates the learning rate and r is
the reinforcement signal. The reinforcement control signal is positive,
enabling Hebbian learning, for reward-related events and zero,
clamping the efficacies of BG synapses, for non reward-related events
(baseline dopamine levels). Reduction of dopamine levels below
background level is reflected by negative reinforcement values and
reversal of the learning rules in the cortico–striatal synapses. Finally, in
the triple synapses the learning rates are proportional to the absolute
value of the reinforcement signal.



restores the background level of dopamine. However, the
intermittent pulsatile nature of the treatment causes
inevitable fluctuations in striatal dopamine [51]. These
fluctuations are randomly timed relative to the environ-
ment and therefore may result in the generation of random
encoding and the development of dyskinesia.

Closing the loop, sequential behavior and
conclusions
The output of the BG is directed mainly towards the 
thalamus. Most models of the BG network assume that the
thalamus acts as a simple relay station between the GPi
and the frontal cortex. However, the projections from GPi
to several thalamic nuclei, the heavy back projections from
the cortex to the thalamus and to the reticular nucleus, 
the thalamo-striatal projections [52•,53••], and finally the 
complex thalamic network, suggest that the thalamus serves
a more complicated role. In any case, at least part of the BG
output is fed back through the thalamus to the frontal 
cortex and the striatum. Although it is not yet clear whether
the system is a complete closed system or an open inter-
connected system [54,55], the gross anatomy of the BG is
one of a semi-closed loop. This semi-closed loop allows the
BG to play a key role in sequential behavior [56,57].

In conclusion, computational models have been instrumental
in advancing our understanding of the BG in normal and
pathological behavior. The reinforcement dimensionality
reduction model of the BG circuitry uses the main features
of many of these models, and provides insights into some of
the mysteries of the BG. It explains the role of the anatom-
ical numerical reduction and lateral connections in the BG,
the tonic, background level of the neuronal reinforcement
signal, and the physiological finding of independent and
synchronized pallidal activity in normal and Parkinsonian
states, respectively. Further studies of the predictions of
this and other models should enable us to better shape 
realistic models of the BG, and to gain a better understand-
ing of the role of the BG in health and disease. 
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