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Abstract

Recording of multiple neurons from a single electrode is common practice during extra-cellular recordings. Separation and
sorting of spikes originating from the different neurons can be performed either on-line or off-line using multiple methods for
pattern matching. However, all spike sorting techniques fail either fully or partially in identifying spikes from multiple neurons
when they overlap due to occurrence within a short time interval. This failure, that we termed the ‘shadowing effect’, causes the
well-known phenomenon of decreased cross-correlation at zero offset. However, the shadowing effect also causes other artifacts
in the auto and cross-correlation of the recorded neurons. These artifacts are significant mainly in brain areas with high firing rate
or increased firing synchrony leading to a high probability of spike overlap. Cross correlation of cells recorded from the same
electrodes tends to reflect the autocorrelation functions of the two cells, even when there are no functional interactions between
the cells. Therefore, the cross-correlation function tends to have a short-term (about the length of the refractory period) peak. A
long-term (hundreds of milliseconds to a few seconds) trough in the cross-correlation can be seen in cells with bursting and
pausing activities recorded from the same electrode. Even the autocorrelation functions of the recorded neurons feature firing
properties of other neurons recorded from the same electrode. Examples of these effects are given from our recordings in the
globus pallidus of behaving primates and from the literature. Results of simulations of independent simple model neurons exhibit
the same properties as the recorded neurons. The effect is analyzed and can be estimated to enable better evaluation of the
underlying firing patterns and the actual synchronization of neighboring neurons recorded by a single electrode. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Extracellular recording of neuronal activity is a ma-
jor tool in neurophysiological studies of the brain.
Microelectrodes are used for recording local currents
deriving from both spiking activity and local field po-
tentials. A single electrode can potentially pick up
signals from multiple cells within a local area (Abeles,
1974; Asanuma, 1989). Many types of studies of the
nervous system function demand a separation of the
recorded signal into spikes originating from different

cells. The spikes recorded from different neurons usu-
ally differ in size and shape, thereby enabling their
sorting into the different sources (Lewicki, 1998; Harris
et al., 2000). Recording and separation of multiple
neurons from a single electrode allows examination of
the behavior of a population of neurons that are usu-
ally much closer than multiple neurons recorded by
different electrodes. Such studies are therefore manda-
tory for understanding local neural networks (Egger-
mont, 1990; Abeles, 1991).

There are plenty of methods for decomposing the
output of single electrodes into parallel spike trains (see
review of spike sorting methods in Lewicki, 1998). The
methods differ in the algorithms used for sorting (rang-
ing from amplitude discrimination to principal and
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independent component analysis of the spike shape),
the working time frame (real time and offline methods)
and the verification methods. In general, all methods
suffer from problems common in classical signal detec-
tion methods, e.g. false positives (noise in the signal is
classified as real spikes) and false negatives (real spikes
are rejected as noise). However, when using spike-sort-
ing methods, additional errors may occur. These errors
include false match (a spike generated by one unit is
classified to a different unit) and double match (a single
waveform is classified as belonging to more than one
class). The number of such errors can be reduced by
better signal to noise recording conditions, and by more
careful and elaborate sorting methods.

When the errors in either sorting or identification are
systematic, they might cause effects, which seem to
derive from the properties of the neurons rather than
from the classification procedure (Quirk and Wilson,
1999). Such a systematic classification error occurs due
to the spike overlap problem. All sorting methods
perform quite well when the spikes recorded from the
electrode are sufficiently separated in time. However,
when multiple spikes appear closely, causing an overlap
of their effects on the recorded signal, all sorting meth-
ods perform significantly worse. This overlap may re-
sult in several consequences: none of the spikes is
identified (complete false negative); only one of the
spikes is identified (partial false negative); or the over-
lapped signal is identified as another different spike
(false match). The overlapping problem is usually not
handled, although some methods have been developed
for reducing the misidentification cause by the overlap
(Lewicki, 1998). These methods include identification
by neural networks (Chandra and Optican, 1997) and
overlap decomposition (Atiya, 1992; Lewicki, 1994;
Zouridakis and Tam, 1997). However, whichever meth-
ods are used, overlapping spikes are identified signifi-
cantly worse than well-separated spikes. In this
manuscript we show that the auto and cross-correlation
functions of simultaneously recorded units (especially in
brain areas with high firing rates and synchronized
discharge) are significantly affected by the sorting lim-
its. Thus, short and long term synchronization might
appear in the cross-correlograms due to the sorting
problems in spite of the fact that the neurons fire
independently. Finally, we describe methods for esti-
mating these artifacts, and thus enabling better under-
standing of the firing patterns and synchronization of
neighboring neurons in the central nervous system.

2. Methods

2.1. Beha�ioral and recording methods

Real data was taken from electrophysiological

recordings of multiple spike trains from the globus
pallidus of behaving monkeys. Details of the behavior
of the monkeys and animal care are described elsewhere
(Bar-Gad et al., 2000). During the recording sessions,
eight glass-coated tungsten microelectrodes confined
within a cylindrical guide (2.2 mm outer diameter) were
advanced to the target. Neuronal activity from each
electrode was amplified (*10 000), bandpass filtered
(300–6000 Hz, four poles Butterworth filter, MCP 2.0
Alpha-Omega Engineering, Nazareth, Israel), and con-
tinuously sampled at 24 KHz/electrode (AlphaMap 4.8,
Alpha-Omega Engineering). Detection and sorting of
neural activity was done using real time and offline
methods (see below). Only well-isolated and stable
spike trains (as judged by stable spike waveforms,
stable firing rate and consistent responses to behavioral
events) were included in this study.

2.2. Real time spike sorting

The electrode output was sorted and classified in real
time by a template-matching algorithm (MSD 3.21,
Alpha-Omega Engineering). The electrode signal was
continuously sampled at 50 KHz, placed in a buffer
containing the last 100 samples (2 ms), and compared
continuously with one to three templates. Each tem-
plate was constructed of eight equally spaced points
separated by 0.1 ms, and was defined by the user
following a learning process of threshold crossing sig-
nals. The sum of squares of the differences between
eight points in the buffer (starting 0.4 ms from the
beginning of the buffer and equally spaced at 0.1 ms)
and the templates was calculated. When this sum
reached a minimum that was below a user-defined
threshold, detection was hardware reported. In the
cases that a buffer was double matched (e.g. a signal
passed the criteria of more than one template), an error
signal was given to the user, but no hardware report
was created. A dead time of 0.06 ms followed detection.
The timing of the hardware detections (100 �s active
low TTL pulses) were edge recorded at 12 KHz by a
data logger (AlphaMap 4.8, Alpha-Omega Engineering)
in parallel with the analog signals of the electrode
output and of the behavioral events.

2.3. Offline spike sorting

The continuous (24 KHz) sampling of the electrode
output was subject to off-line spike sorting procedure
(AlphaSort 3.8, Alpha-Omega Engineering). This
algorithm is based on principal component analysis of
the spike pattern (Abeles and Goldstein, 1977).
The algorithm assumes that most of the spike
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waveform can be represented as a linear combination of
two principal vectors, and that spikes generated by the
same neurons will create a cluster of points in a two
dimensional space representing the correlation between
the spikes and the principal vectors. The principal
vectors are calculated using existing libraries of extra-
cellular recorded spikes in the relevant brain regions.

There are four steps in the off-line sorting procedure:
extraction, projection, classification and, finally, verifi-
cation. The first step is the extraction step, in which the
program performs automatic detection of 2.7 ms seg-
ments with suspected spikes, based on threshold cross-
ing. The threshold is calculated from the variance of the
electrode output during the last 5.2 s. If more than one
threshold crossing is detected in less than 1 ms, the
higher one is selected. The candidate segments are
extrapolated to 96 KHz, yielding 2.7 ms long segments
with 256 sampling points. In the second step the sus-
pected segments are projected on the two principal
components and the approximation error of the origi-
nal signal by the linear combination of the two princi-
pal vectors is calculated. To overcome the variability
induced by the properties of the signal and the extrac-
tion step, the length of the principal vectors is 196
points (�2 ms) and the approximation error is calcu-
lated for all possible (60) offsets. The program finds the
offset with the minimum approximation error and uses
it for the classification step. In the classification step,
the user is provided with a two dimensional display of
all spikes with acceptable approximation error on the
principal component space. The user classifies the neu-
ron by drawing polygons around clusters of spike pro-
jections, and can subsequently modify these clusters
along with the progression of the recording. Finally, the
last and most critical step is the verification of the
sorting. The user can test the waveforms of the sorted
spikes, evaluate the stability of their shape and rate,
their similarity to other sorted spikes and test their
inter- and cross-spike interval histograms to be compat-
ible with those of single neurons (Fee et al., 1996). The
timing of the spikes is written at 12 KHz resolution,
and all further analysis is performed using 1 ms bins.

The main advantages of the off-line sorting are that
the user can make decisions with respect to the whole
data. Decisions are not based only on current and
recent past history. In addition, the user can re-evaluate
those decisions using additional measures and statistical
tests. Finally, off-line sorting reduces the sampling bias
towards units with high firing rates, since a significant
number of spikes can be accumulated over long record-
ing even of cells with very low firing rates.

2.4. Simulation techniques

Simplistic models of the neurons were used for simu-
lating the shadowing effect. The spike trains of n mod-

eled cells were created as independent processes
X1,t … Xn,t. Each cell (m), had a refractory period of
length � ref

m featuring lowered firing probability p ref
m (t)

followed by constant firing probability (p const
m ). These

cells are known as models of a Poisson process with a
refractory period (MacGregor, 1987). The refractory
period was defined for simplicity as an exponent func-
tion p ref

m (t)=k (�ref
m +1− t) p const

m , t�� ref
m , k�1. In addi-

tion, some of the cells featured long-term correlations
in their firing rate. The long-term correlations were
created by low probability (ppause

m ) pauses of length
tpause

m in the cell’s firing simulating the pauses typical to
the external segment of the globus pallidus. The values
for the variables used throughout the simulations ware
in accordance with those seen in the electrophysiologi-
cal recordings of the globus pallidus 4 ms ��ref�10
ms, 0.05�pconst�0.2, 500 ms� lpause�3000 ms,
10−4�ppause�10−3 (DeLong, 1971).

Simulation of recording from a single electrode was
performed for two different models: complete shadow-
ing, removing all spikes of the two cells occurring
within a single bin (Simple model) or partial shadow-
ing, removal with different probabilities of spikes in
temporally close occurrence (Complex model). The bins
for the simulation were of the same length as those used
for the electrophysiological recordings (1 ms). The
length of the simulated processes was in the same order
as the recorded data (106 bins=1000 s).

3. Results

3.1. Electrophysiological recordings

Neurons recorded in the globus pallidus display com-
mon characteristics. The spontaneous firing rate of the
cells is generally high compared to other brain areas
(40–100 Hz), with a refractory period of several mil-
liseconds (4–10 ms). The short time scale autocorrela-
tion functions display a typical peak in the
autocorrelation function following the refractory period
(Fig. 1a,c). These peaks derive from the refractory
period of the cells and not from an increased firing
probability (Bar-Gad et al., 2000). The cross-correla-
tion function between neurons recorded by different
electrodes displays a flat correlogram in over 95% of
neuron pairs (Nini et al., 1995; Raz et al., 2000) (Fig.
1d). However, the cross-correlation function of neurons
recorded by the same electrode displays reduced proba-
bility around zero offset, followed by a short-term
(narrow) peak. The duration of the short-term peak
equals the duration of the refractory periods of the
cells, and the peak is surrounded by short troughs in
the correlation (Fig. 1b). Examples of cross-correlation
functions of neurons recorded by the same electrode,
featuring similar properties, appear in literature for
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various brain regions: frontal cortex (Vaadia et al.,
1991, Fig. 9d), dorsal cochlear nucleus (Voigt and
Young, 1980, Fig. 9b), reticular formation region of the
midbrain (MacGregor et al., 1975, Fig. 5b), medulla
(Feldman et al., 1980, Fig. 7c), auditory cortex (Dick-
son and Gerstein, 1974, Figs. 5b,6j; Eggermont, 1992,
Fig. 1a), substantia nigra (Wilson et al., 1977) and
medial geniculate body (Heierli et al., 1987, Figs. 1,2).

The neurons of the globus pallidus (especially those
of the external segment) display pausing activity (De-
Long, 1971). The pauses reflect a decrease in firing rate
from the typical high rate to very low rates for pro-

longed periods (500–3000 ms). This firing-pattern
causes long-term (hundreds of milliseconds up to a few
seconds) peaks in the autocorrelation functions (Fig.
2a-upper plot, c) (DeLong, 1971). Other cells may not
display pausing activity, leading to a flat autocorrela-
tion function (Fig. 2a-lower plot). The long-term cross-
correlation between the neurons is flat when the cells
are recorded by different electrodes (Fig. 2d). However,
when the neurons are recorded by the same electrode,
and at least one of the cells displays a long-term (wide)
peak in the autocorrelation, the cross-correlation func-
tion reveals a typical long shallow trough of the same

Fig. 1. Examples of short-term cross-correlation functions between neurons recorded from the same electrode and from different electrodes in the
globus pallidus. (a) Autocorrelation functions of neurons recorded from a single electrode (990513/2/5 and 990513/2/6); (b) Cross-correlation
function of the pair of neurons shown in (a), showing the typical short-term peak due to the shadowing effect; (c) Autocorrelation functions of
neurons recorded from different electrodes (990513/2/1 and 990513/2/29); (d) Cross-correlation function of the pair of neurons shown in (c),
showing the typical flat cross-correlation in the pallidum.
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Fig. 2. Examples of long-term cross-correlation functions between neurons recorded from the same electrode and from different electrodes in the
globus pallidus. (a) Autocorrelation functions of neurons recorded from a single electrode (990513/2/5 and 990513/2/6); (b) Cross-correlation
function of the pair of neurons shown in (a), showing the typical long-term trough due to the shadowing effect; (c) Autocorrelation functions of
neurons recorded from different electrodes (990513/2/1 and 990513/2/29); (d) Cross-correlation function of the pair of neurons shown in (c),
showing the typical flat cross-correlation in the pallidum. In (a–d) 100 bins are displayed, each bin consists of the average of 40 ms. The bin-zero
effects are therefore smoothed by the neighboring values.

time-scale as the peak in the autocorrelation function
(Fig. 2b).

In general, when multiple neurons are recorded from
the same electrode, their autocorrelation characteristics:
oscillations, peaks and troughs tend to reflect onto the
cross-correlation function. Prior research has shown
that when cells are not independent i.e. have some
functional connectivity, their cross-correlation function
reflects their autocorrelation functions in various exper-
imental setups (Eggermont, 1990). However, indepen-
dent cells recorded from different electrodes do not

display this feature. In such cases the autocorrelation
reflection is unique to recordings from the same elec-
trode and is caused by the shadowing effect.

3.2. Simulations

Neurons were simulated independently with firing
characteristics typical to those of the globus pallidus of
primates. The simulated neurons featured a refractory
period of decreased firing probability, followed by a
period of constant firing probability. The combination
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Fig. 3. Short-term cross-correlation: simulation results. (a–b) Autocorrelation of the two simulated independent cells before removal of common
spikes; (c) Spike trains of two cells without removal of spikes occurring at the same bin, simulating recording from different electrodes; (d) Cross
correlation of cells (a–b) without removal of spikes reveals a flat cross correlogram; (e) Spike trains of two cells after removal of spikes occurring
at the same bin, simulating recording from the same electrode (simple shadowing); (f) Cross correlation cells (a–b) after removal of spikes
occurring at the same bin reveals a small peak surrounding the zero valued central bin; (g) Spike trains of two cells after removal of spikes
occurring at multiple bins, simulating recording from the same electrode (complex shadowing). Notice that in some cases spikes from both spike
trains are removed, whereas at other times only one of the spike trains loses a spike; (h) Cross correlation of cells (a–b) after removal of spikes
occurring at the multiple bins Sm,n=Sn,m= [0.5 1 0.5], reveals a larger peak in the cross correlation function surrounding the three central bins.
The parameters used in the figure are:

�t=1 ms, �1=6 ms, p1=0.15, �2=8 ms, p2=0.12, pt=k (�r+1− t) p t��r, k=0.5.
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Fig. 4. Long-term cross correlation: simulation results. (a–b) Autocorrelation of the two cells before removal of common spikes; (c) Cross
correlation of two simulated independent cells (a–b) without removal of spikes occurring at the same bin, simulating recording from different
electrodes and demonstrating flat correlograms; (d) Cross correlation of two simulated independent cells (a–b) after removal of spikes occurring
at the same bin, simulating recording from the same electrode and demonstrating a small trough in the correlogram; (e) Cross correlation of two
simulated independent cells (a–b) after removal of spikes occurring at multiple bins Sm,n=Sn,m= [0.5 1 0.5] and demonstrating a large trough in
the correlogram. The parameters used in the figure are:

�t=1 ms, �1=4 ms, p1=0.1, �2=6 ms, p2=0.08, pt=k (�r+1− t) p t��r, k=0.5. ppause=0.001, l� pause=500 ms. Size of a bin is 40 ms.

of high firing rate with the refractory period leads to
autocorrelation functions with short peaks following the
refractory period (Bar-Gad et al., 2000) (Fig. 3a,b). A
short trace of spikes is shown for the two cells (Fig. 3c).
Since the cells were created independently, the cross-cor-
relation function is flat (Fig. 3d). However, a simple
model simulating a recording of two cells by a single
electrode can be obtained by removal of all spikes
occurring within a single bin (Fig. 3e). The cross-corre-
lation function created from the new spike trains (Fig.
3f) has the typical short-term peak seen in the experimen-
tal results. Creation of a more complex shadowing period

by removing common spikes for multiple offsets (e.g. in
the range of �2 ms) with different probabilities (e.g.
100% at �1 ms and 50% at �2 ms, Fig. 3g) enhances
the size of the peak in the cross-correlation (Fig. 3h).

To test the long-term shadowing effects we simulated
independent neurons featuring a tendency towards paus-
ing in the firing in addition to the refractory period
properties. This firing pattern leads to a long-term peak
in the autocorrelation functions in addition to the
short-term phenomena (Fig. 4a,b). Since the cells are
independent, their cross-correlation function is flat (Fig.
4c). However, the removal of spikes occurring in the
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same bin causes the cross-correlation function to fea-
ture a wide trough (Fig. 4d) similar to the one seen
in experimental data (Fig. 2b). This trough is also
affected by the width of the shadowing effect and its
shape, growing with the increase in the shadowing
period length (Fig. 4e).

3.3. Analysis

For the analysis of the shadowing effect we shall
first use the simple model of complete shadowing last-
ing for a single bin (removal of all common spikes
within the central, zero offset, bin and no effect on
spikes in any other bin). Another assumption is that
only two cells are recorded from the same electrode.
Both of these assumptions will be removed in the
analysis of the general model. The details of the
mathematical analysis are given in Appendix A.

Assuming that p1 and p2 are the firing probabilities
of the original cells, before removal of common
spikes. The firing probabilities of the two cells after
removal of the common spikes equal the probability
that one of the cells fired and the other did not.

pn*=pn(1−pm), (1)

where, n, m=1, 2. Let: a1(t) and a2(t) be the autocor-
relation functions of the original cells and assume in-
dependence of the underlying cells. The cross
correlation of the two cells (at offset different than
zero) after the removal of common spikes is given by,

cn,m* (t)= (1−an(t))(1−am(t))
pn

1−pn

. (2)

The results of the analysis performed on the cells
used for the simulation examples in the prior sections
are similar to the computational (simulation) results.

The general model deals with a shadowing effect
for multiple offset bins. The shadowing effect may
not be complete, such that in each bin during the
shadowing period (−� to +�) the removal of spikes
from cell m occurs with the probability Sn,m(t) where
t is the offset from the spikes of cell n,

0�Sn,m(t)�1 �t ���.

Sn,m(t)=0 �t ���
(3)

The shadowing effect is not symmetric in time
(Sn,m(t) is not necessarily equal to Sn,m(− t)) and not
symmetric between the neurons (Sn,m(t) is not neces-
sarily equal to Sm,n(t) or Sm,n(− t)). The firing proba-
bility in this case, under the assumption that the
shadowing period is shorter than the refractory pe-
riod, is

pn*=pn
�

1−pm �
�

u= −�

Sm,n(u)
�

. (4)

The cross correlation of the two cells under the inde-
pendence assumption is

cn,m* (t)=
�

1− �
�

u= −�

Sn,m(u) an(t+u)
�

(5)

×
�

1− �
�

u= −�

Sn,m(u) am(t−u)
� pn

1−pn �u= −�
� Sn,m(u)

.

The equations describing the general solution are
equal to the equations of the simple solution for �=
0, Sn,m(0)=Sm,n(0)=1.

The size of the changes in the cross-correlation
caused by the shadowing effect varies considerably
according to the cells’ characteristics such as firing
probability and the shape of the autocorrelation func-
tion. The size of the change also varies according to
features of the experimental setup and the sorting
method that are reflected in the length and shape of
the shadowing period. Assuming that the shadowing
period is shorter than the absolute refractory period,
the difference between the short-term peak in the
cross correlation and the steady state can be approxi-
mated by,

�cn,m* �pn
�

pn �
�

u= −�

Sn,m(u)+pm �
�

u= −�

Sm,n(u)
�

. (6)

The size of the peak as a function of the firing rates,
and of the shadowing period is shown (Fig. 5).

Assuming that the cells have a long-term peak in
their autocorrelation functions (Fig. 2a,c and Fig.
4a,b), and that �an and �am are the maximum offsets
of the peaks from steady state, the size of the trough
in the cross correlation can be approximated by, (7)

�cn,m* � −pn
�
�am �

�

u= −�

Sm,n(u)+�an �
�

u= −�

Sn,m(u)
�

.

Recording from a single electrode is not limited to
two cells and may consist of multiple cells (Fig. 6).
The shadowing effect is enhanced in such cases and is
evident even in areas with slower firing rates. Even if
some of the cells are not detected by the sorting
devices, they may still bare an effect on the observed
firing of the identified cells. Assuming that n neurons
are recorded from the same electrode, the firing prob-
ability of any cell is affected by the other n−1 neu-
rons

pi**=pi �
k� i

�
1−pk �

�

u= −�

Si,k(u)
�

. (8)

The cross correlation of any two cells is
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c i, j**(t)=c i, j* (t) �
k� i, j

�
1−

pk

1−pk �u= −�
� Si,k(u)

(9)

×
�

1− �
�

u= −�

Si,k(u) ak(t+u)
��

.

As before, the effects of the additional cells measured
from the electrode can be significant depending on their
firing rate and characteristics.

3.4. Autocorrelation effects

The firing pattern of one neuron may cause changes

in the observed firing pattern of other neurons recorded
by the same electrode in addition to the previously
shown effects on their cross-correlation. This change in
firing pattern may be evident in the autocorrelation
function of the cell. The value of the autocorrelation
function of a cell when two cells are recorded by the
same electrode is for the simple case

an*(t)=an(t)
�

1−
pm

1−pm

(1−am(t))
n

, (10)

and for the complex case

The effect will usually be seen as a uniform decrease
in the correlation function. However, although the ef-
fect is significantly smaller than the one reflected in the

an*(t)=an(t)

1−pm
�

2 �u= −�
� Sm,n+�u= −�

� ��= −�
� am(t−�+u) Sm,n(u) Sm,n(�)

n
1−pm �u= −�

� Sm,n

. (11)

Fig. 5. Quantitative analysis of the size of the peak in the cross-correlation due to the shadowing effect. The size of the effect is reflected by the
difference between the peak in the correlation and its steady state value and is color encoded showing the effect size normalized as a percent of
the firing rate of the reference cell. (a) Assuming a 2 ms shadowing period and depending on the original firing rates; (b) Assuming a 2 ms
shadowing period and depending on the observed firing rates. The relative effect is larger since the observed rate is equivalent to the higher original
rate after removal of the shadowed spikes; (c) For various shadowing periods, assuming equal firing rates for both trigger and reference cells,
depending on the original firing rates; (d) For various shadowing periods, assuming equal firing rates for both trigger and reference cells,
depending on the observed firing rates.
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Fig. 6. Recording of multiple cells by the same electrode. (a) Autocorrelation and cross-correlation functions of three pallidal neurons recorded
from the same electrode (990513/1/5, 990513/1/6 and 990513/1/7). Autocorrelation functions appear in filled bars and cross-correlation functions
in empty bars.

cross-correlation, whenever one of the cells has a non-flat
autocorrelation function such as an oscillatory activity,
it changes the actual shape of the other autocorrelation
function (Fig. 7).

4. Discussion

The major points mentioned in the article are:
1. Cells recorded simultaneously from the same elec-

trode and sorted using current sorting methods
change each other’s observed firing pattern. These
changes in the auto and cross correlation functions
are due to the ‘shadowing effect’. This effect may exist
even if a spike is not detected by the recording system.

2. The mutual effects of the cells are different, varying
with the cells characteristics such as rate and shape
of the original autocorrelation function, as well as
parameters of the recording equipment such as the
length and shape of the shadowing period.

3. The removal of the common spikes due to the
shadowing effect causes changes in the correlation
functions. The observed cross-correlation function
reflects the inverted shape of the original autocorre-
lation functions (negative effect). The observed auto-
correlation of a single cell features the shape of the
autocorrelation of all the other cells recorded with it
on the same electrode (positive effect).

The shadowing effect has different significance in
different brain areas and during different recording
paradigms. Generally, areas containing neurons with

high firing rates such as the basal ganglia and the
cerebellum will have larger shadowing effects (Table 1).
In addition to these areas that were simulated and
analyzed throughout the article, areas with lower firing
rates may also be affected when multiple cells in the local
area tend to fire in synchrony. For example, cells in the
cortex tend to fire at very low rates (�5 Hz). However,
when activated, they may increase their rate significantly
(�100 Hz). In many cortical areas neighboring cells tend
to fire in synchrony during such activation (Gray et al.,
1992). The co-activation may cause a severe shadowing
problem during the increased firing periods and may
therefore pose difficulties in drawing conclusions from
the results regarding the local connectivity of neurons.

The shadowing effect may be significant even when the
spike-sorting algorithm does not identify the cell causing
it. A small amplitude spike with relatively small signal
to noise ratio (SNR) may still cause additional false
correlation between other cells recorded and identified by
the same electrode. The effect can be estimated using
formula Eq. (9), even if only a very general assumption
can be made about the ‘invisible cell’. Such is also the
case with cells that have very small signal leading to
partial detection of the spikes. This will lead to a
significantly larger shadowing effect than is expected by
the simple analysis derived from their visible firing. In
addition to these physiological parameters, the experi-
mental setup plays a key role: performance of online
sorting will usually cause larger shadowing effects than
off-line sorting due to reduced identification abilities.
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Slower sampling systems of the analog waveform will
also cause an increase in the shadowing effect, and so will
simplified sorting methods and high noise levels. Further-
more, specific shadowing may affect a subset of the
results: asymmetry in the shadowing effect is caused
when one of the spikes is larger than the others, thereby
shadowing them but remaining relatively unaffected by
them. In addition, overlapping of two spikes may lead
into an identification of a false third unit leading to false
connectivity patterns.

Spike overlap has been a problem since the early days
of multi-unit recording and spike sorting. Attempts to
reduce the extent of the shadowing period have been
performed by improving the signal to noise ratio and by
creating overlap identification methods (Lewicki, 1998).
However, after the sorting was completed, the shadowing
period was generally ignored. Any subsequent analysis of
the cross-correlation assumed that, except for the missing
counts at offset zero, the cross-correlation functions of
neighboring cells should be viewed as those recorded by
different electrodes. Some studies quantitatively esti-
mated the overlap effect by either examining the length
of the short trough near zero (�0.6–2.0 ms, Feldman
et al., 1980) or by simulating the spike shapes and
checking the expected overlap (�0.8–2.4 ms of more

than 10% shadowing, Voigt and Young, 1980). In all
these studies, the effects of the shadowing periods on the
correlation at other time offsets were overlooked.

Clarification of the cross-correlation results and partial
compensation for the shadowing effect can be achieved
by estimating the size of the shadowing effects relevant
for the brain area characteristics and the experimental
setup. However, some other methods exist for reducing
the effect and reducing its significance. Methods for
improved recording such as usage of stereotrodes (Mc-
Naughton et al., 1983) and tetrodes (Harris et al., 2000)
exist, enabling better potential separation of neighboring
neurons. Further improvements can be performed during
the spike identification and separation phases (Lewicki,
1998). However, all current methods do not overcome the
shadowing effect completely leading to the need for
awareness for the possibility of false phenomena derived
from the systematic misidentification of overlapping
spikes in multi-unit recording from a single electrode.
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Table 1
Typical values for the cross-correlation short-term peak for different brain areasa

Original firing rateObserved firing rate �p �p/p (%)
(spikes/s) (spikes/s)

Online sorting �alues �=2,
Sm,n=Sn,m= [0.25 0.75 1 0.75 0.25]

78.5Globus Pallidus 42.660 71.1
STN 25 27.2 4.6 18.6

5.1 0.25 3.1Cortex

Offline sorting �alues �=1,
Sm,n=Sn,m= [0.5 1 0.5]

Globus Pallidus 60 69.7 21.0 35.0
26.4 2.925 11.5STN

Cortex 5.15 0.1 2.1

a The size of the shadowing effect differs according to the characteristics of the brain area and of the experimental setup for the spike detection
process. The size of the effect is given in the table for various regions assuming two typical experimental setups.
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Appendix A

The cells can be described as independent stationary
(0, 1) processes Xn,t where n indicated the process num-
ber and t the time. A value of 1 of the process is
equivalent to a spike for the simulated cell. The firing
probability of the original process Xn is

pn=P(Xn,t=1), (A1)

and the autocorrelation function of the processes is

an(t)=P(Xn,t=1� Xn,0=1). (A2)

The cross correlation function of the cells when
independence is assumed is flat

cn,m(t)=P(Xn,t=1� Xm,0=1)=pn. (A3)

For the analysis of the removal of common spikes we
first assume a simple case of a complete shadowing
effect lasting a single bin. Another assumption that is
made for simplicity is that only two cells are recorded
from the same electrode. Both of these assumptions are
removed in the analysis of the general case. The firing
probabilities of the two cells after removal of the com-
mon spikes is (A4)

pn*=P(Xn,t* =1)=P(Xn,t=1, Xm,t=0)=pn(1−pm).

The cross correlation of the two cells is

cn,m* (t)=P(Xn,t* =1� Xm,0* =1)

=
P(Xn,t=1, Xn,0=0, Xm,0=1)

P(Xm,0=1, Xn,0=0)
(A5)

= (1−an(t))(1−am(t))
pn

1−pn

.

and the autocorrelation is

an*(t)=P(Xn,t* =1� Xn,0* =1)

=
P(Xn,t=1, Xn,0=1, Xm,t=0, Xm,0=0)

P(Xn,0=1, Xm,0=0)

=an(t)
�

1−
pm

1−pm

(1−am(t))
n

.

(A6)

Recording from a single electrode is not limited to
two cells and might consist of multiple cells. The shad-
owing effect is enhanced in such a case and is evident
even in areas with slower firing rate. The formulation
for the simple case (shadowing of a single bin) follows
the same lines used for two cells. Assuming that n
independent processes X1,t, … , Xn,t simulate the cells,
the firing probability is

pt*=P(Xi,t* =1)=P(Xi,t=1, Xk� i,t=0)

=pi �
k� i

(1−pk).
(A7)

The cross correlation of two cells is

c i, j* (t)=P(Xi,t* =1� Xj,0* =1)

=
P(Xi,t=1, Xk� i,t=0, Xj,0=1, Xk� j,0=0)

P(Xj,0=1, Xk� j,0=0)

= (1−ai(t))(1−aj(t)) (A8)

pi

1−pi

�
k� i, j

�
1−

pk

1−pk

(1−ak(t))
n

,

and the autocorrelation function values are

at*(t)=P(Xi,t* =1� Xi,0* =1)

=
P(Xi,t=1, Xt,0=1, Xk� i,t=0, Xk� i,0=0)

P(Xi,0=1, Xk� i,0=0)

=ai(t) �
k� i

�
1−

pk

1−pk

(1−ak(t))
n

.
(A9)
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The complex shadowing period that enables descrip-
tion of the general misidentification effects can be de-
scribed by the probabilities of the misidentification
Sn,m(t) of neuron m caused by neuron n at offset t. An
auxiliary variable that is important is the sum of these
effects:

Tn,m=pn �
�

u= −�

Sn,m(u). (A10)

The firing probability for the general case can be de-
scribed as

pn*=P(Xn,0* =1)=P(Xn,0=1)−P(Xn,0=1, Xn,0* =0)

=pn−pn pm �
�

u= −�

Sm,n=pn (1−Tm,n).
(A11)

The cross-correlation of two neurons is
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cn,m(t)=P(Xn,t* =1� Xm,0* =1)

=
P(Xn,t=1, Xm,0=1) P(Xn,t* =1� Xn,t=1, Xm,0=1) P(Xm,0* =1� Xn,t=1, Xm,0=1)

P(Xm,0=1)

=
pm

1−Tm,n

�
1− �

�

u= −�

am(t+u) Sm,n(u)
� �

1− �
�

u= −�

an(t−u) Sm,n(u)
�

(A12)

The autocorrelation is,

an*(t)=P(Xn,t* =1� Xn,0* =1)

=
P(Xn,t=1, Xn,0=1) P(Xn,t* =1, Xn,0* =1� Xn,t=1, Xn,0=1)

P(Xm,0=1)
,

=an(t)
1−pm

�
2 �u= −�

� Sm,n+�u= −�
� ��= −�

� am(t−�+u) Sm,n(u) Sm,n(�)
n

1−pm �u= −�
� Sm,n

.

.


