top of page

Izhar Bar-Gad, Ph.D.

Born: Rehovot, Israel, 1971

Citizenship: Israeli


E-mail: at

Tel: +972-3-5317141


1998-2003      Ph.D.   The Hebrew University, Jerusalem, Israel

                    Interdisciplinary Center for Neural Computation


Doctoral Thesis: Reinforcement driven dimensionality reduction as a model for information processing in the basal ganglia.

Advisors: Prof. H. Bergman (Dept. of Physiology) ,  Prof. Y. Ritov (Dept. of Statistics)


1996-1998       M.Sc.   The Hebrew University, Jerusalem, Israel

                       Interdisciplinary Center for Neural Computation


1992-1995       B.Sc.    Tel-Aviv University, Tel-Aviv, Israel

                       Department of Biology

                       Graduated Magna Cum Laude


Positions & Research Experience

2018-present   Bar-Ilan University, Ramat-Gan, Israel


2012-2018       Bar-Ilan University, Ramat-Gan, Israel

                       Associate Professor


2010-2012        Bar-Ilan University, Ramat-Gan, Israel

                        Senior lecturer


2010-2013        International Basal Ganglia Society



2008-2011        Bar-Ilan University, Ramat-Gan, Israel

                        Head of the Brain Sciences program


2005-2010        Bar-Ilan University, Ramat-Gan, Israel



2004-2005        University of California, San-Francisco, USA

                        Postdoctoral fellow (6 months)


2004               The Hebrew University, Jerusalem Israel

                        Postdoctoral Fellow (6 months)


Work experience


2000-2002       Sanctum Inc., Santa-Clara, CA.

                       Chief Technology Officer (CTO)                      


1997-2000       Sanctum, LTD, Herzelia, Israel            

                       Project manager, advanced technologies group


1994-1997       AMDOCS, Ramat-Gan, Israel

                       Researcher & Project manager, Distributed artificial intelligence R&D


1989-1994       IDF intelligence forces, Israel

                       Researcher & Project manager, Algorithmic R&D


List of Publications


Reviewed Papers

  1. Matzner A, Gorodetski L, Korngreen A, Bar-Gad I., Dynamic input-dependent encoding of individual basal ganglia neurons. Scientific Reports, 10(1):5833, 2020.

  2. Israelashvili M, Yael D, Vinner E, Belelovsky K, Bar-Gad I., Common neuronal mechanisms underlying tics and hyperactivity. Cortex, 127:231-247, 2020.

  3. Yael D., Tahary O., Gurovich B., Belelovsky K., Disinhibition of the nucleus accumbens leads to macro-scale hyperactivity consisting of micro-scale behavioral segments encoded by striatal activity, Journal of Neuroscience, 39(30):5897-5909, 2019.

  4. Yael D., Vecht J., Filter based phase shifts distort neuronal timing information, eNeuro, 19;5(2), 2018.

  5. Lavian H., Loewenstern Y., Madar R., Almog M., , Okun E., Korngreen A., Dopamine receptors in the rat entopeduncular nucleus, Brain Structure & Function, 223(6):2673-2684, 2018.

  6. Oran Y., Loss of balance between striatal feedforward inhibition and corticostriatal excitation leads to tremor, Journal of Neuroscience, 38(7):1699 –1710, 2018.

  7. Rizzo F., Nespoli E., Abaei A., , Deelchand D. K., Fegert J., Rasche V.,Hengerer B., Boeckers T. M., Aripiprazole selectively reduces motor tics in a young animal model for Tourette’s Syndrome and comorbid ADHD, Frontiers in Neurology, 9:59, 2018.

  8. Vinner E., Israelashvili M., , Prolonged striatal disinhibition as a chronic animal model of tic disorders. Journal of Neuroscience Methods, 292:20-29, 2017.

  9. Lavian H., Almog M., Madar R., Loewenstern Y., , Okun E., Korngreen A., Dopaminergic Modulation of Synaptic Integration and Firing Patterns in the Rat Entopeduncular Nucleus. Journal of Neuroscience, 37(30):7177-7187, 2017.

  10. Israelashvili M., Smeets A.Y.J.M., Bronfeld M., Zeef D.H., Leentjens A.F.G., van Kranen-Mastenbroek V., Janssen M.L.F., Temel Y., Ackermans L., , Tonic and phasic changes in anteromedial globus pallidus activity in Tourette syndrome. Movement Disorders. 32(7):1091-1096, 2017.

  11. Amit R., Abeles D., , Yuval-Greenberg S., Temporal dynamics of saccades explained by a self-paced process. Scientific Reports. 7(1):886, 2017.

  12. Yael D., , Filter based phase distortions in extracellular spikes. PLoS One. 12(3):e0174790, 2017.

  13. Matzner A., Moran A., Erez Y., Tischler H., , Beta oscillations in the parkinsonian primate: Similar oscillations across different populations. Neurobiology of Disease, 93:28-34, 2016.

  14. Yael D., Israelashvili M., Animal Models of Tourette Syndrome - From Proliferation to Standardization. Frontiers in Neuroscience, 10:132, 2016.

  15. Israelashvili M., Bar-Gad I., Corticostriatal Divergent Function in Determining the Temporal and Spatial Properties of Motor Tics. Journal of Neuroscience, 35(50):16340-51, 2015.

  16. Yael D., Vinner E., Bar-Gad I., Pathophysiology of tic disorders. Movement Disorders, 30 (9):1171-8, 2015.

  17. Israelashvili M.*, Loewenstern Y.*, Bar-Gad I., Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation. Journal of Neurophysiology. 114(1):6-20, 2015.

  18. Matzner A., Bar-Gad I., Quantifying spike train oscillations: biases, distortions and solutions. PLoS Computational Biology 11(4):e1004252, 2015.

  19. Pashut T., Magidov D., Ben-Porat H., Wolfus S., Friedman A., Perel E., Lavidor M., Bar-Gad I., Yeshurun Y., Korngreen A., Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation. Frontiers in Cellular Neuroscience. 8:145, 2014.

  20. Yael D., Zeef D. H., Sand D., Moran A., Katz D., Cohen D., Temel Y., Bar-Gad I., Haloperidol-induced changes in neuronal activity in the striatum of the freely moving rat. Frontiers in Systems Neuroscience. 7:110, 2013.

  21. Bronfeld M., Yael D., Belelovsky K., Bar-Gad I., Motor tics evoked by striatal disinhibition in the rat. Frontiers in Systems Neuroscience. 7:50, 2013.

  22. Bugaysen J., Bar-Gad I., Korngreen A., Continuous modulation of action potential firing by a unitary GABAergic connection in the globus pallidus in vitro. Journal of Neuroscience. 33(31):12805-9, 2013.

  23. Bronfeld M., Israelashvili M., and Bar-Gad I., Pharmacological animal models of Tourette syndrome, Neuroscience and Biobehavioral Reviews, 37: 1101-19, 2013.

  24. Stein E., and Bar-Gad I., Beta oscillations in the cortico-basal ganglia loop during parkinsonism. Experimental Neurology, 245: 52-59, 2013.

  25. Bronfeld M., Bar-Gad I., Tic Disorders: What Happens in the Basal Ganglia?, Neuroscientist, 9(1):101-8, 2013.

  26. Benhamou L., Bronfeld M., Bar-Gad I., and Cohen D., Globus Pallidus External Segment Neuron Classification in Freely Moving Rats: a Comparison to Primates. PLoS One, 7(9):e45421, 2012.

  27. Tischler H., Moran A., Belelovsky K., Bronfeld M., Korngreen A., and Bar-Gad I., Changes in basal ganglia processing of cortical input following magnetic stimulation in Parkinsonism. Neurobiology of Disease, 48(3):464-73, 2012.

  28. Moran A., Stein E., Tischler H., and Bar-Gad I., Decoupling neuronal oscillations during subthalamic nucleus stimulation in the parkinsonian primate, Neurobiology of Disease, 45(1):583-90, 2012.

  29. Berger U., Korngreen A., Bar-Gad I., Friedman A., Wolfus S., Yeshurun Y., Lavidor M., Magnetic stimulation intensity modulates motor inhibition, Neuroscience Letters, 504(2):93-7, 2011.

  30. Bronfeld M., Bar-Gad I., Loss of specificity in basal ganglia related movement disorders, Frontiers in Systems Neuroscience, 5:38, 2011.

  31. Bronfeld M, Belelovsky K, Bar-Gad I., Spatial and temporal properties of tic-related neuronal activity in the cortico-Basal Ganglia loop. Journal of Neuroscience, 31(24):8713-21, 2011.

  32. Moran A.*, Stein E.*, Tischler H., Belelovsky K. Bar-Gad I., Dynamic stereotypic responses of basal ganglia neurons to subthalamic nucleus high-frequency stimulation in the parkinsonian primate. Frontiers in Systems Neuroscience, 5:21, 2011.

  33. Bugaysen J., Bar-Gad I., Korngreen A., The impact of stimulation induced short term synaptic plasticity on firing patterns in the globus pallidus of the rat. Frontiers in Systems Neuroscience, 5:16, 2011.

  34. Pashut T., Wolfus S., Friedman A., Lavidor M., Bar-Gad I., Yeshurun Y. and Korngreen A., Mechanisms of magnetic stimulation of central nervous system neurons. PLoS Computational Biology 7(3): e1002022, 2011.

  35. Erez Y., Czitron H., Belelovsky K. and Bar-Gad I., Dispersed encoding of passive movement in the Globus Pallidus of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated primate PLoS One, 6(2):e16293, 2011.

  36. Tischler H, Wolfus S, Friedman A, Perel E, Pashut T, Lavidor M, Korngreen A, Yeshurun Y, and Bar-Gad I., Mini-coil for magnetic stimulation in the behaving primate, Journal of Neuroscience Methods, 194(2):242-51, 2011.

  37. Bronfeld M., Belelovsky K., Erez Y., Bugaysen J., Korngreen A., and Bar-Gad I., Bicuculline induced chorea manifests in cellular rather than network level changes in the globus pallidus, Journal of Neurophysiology,104(6):3261-75, 2010.

  38. Bugaysen J., Bronfeld M., Czitron H., Bar-Gad I., and Korngreen A., Electrophysiological characteristics of globus pallidus neurons, PLoS One, 5(8):e12001, 2010.

  39. Erez Y., Tischler H., Moran A. and Bar-Gad I., Generalized framework for stimulus artifact removal, Journal of Neuroscience Methods, 191(1):45-59, 2010.

  40. Moran A. and Bar-Gad I., Revealing neuronal functional organization through the relation between multi-scale oscillatory extracellular signals, Journal of Neuroscience Methods, 186(1): 116–129, 2010.

  41. McCairn K. W.*, Bronfeld M.*, Belelovsky K. and Bar-Gad I., The neurophysiological correlates of motor tics following focal striatal disinhibition, Brain, 132: 2102-13, 2009.

  42. Erez Y., Czitron H., McCairn K. W., Belelovsky K. and Bar-Gad I., Short-term depression of synaptic transmission during stimulation in the globus pallidus of MPTP treated primates, Journal of Neuroscience, 29(24): 7797-7802, 2009.

  43. Moran A., Bergman H., Israel Z. and Bar-Gad I., Subthalamic nucleus functional organization revealed by parkinsonian neuronal oscillations and synchrony, Brain, 131: 3380-94, 2008.

  44. Moran A., Bar-Gad I., Bergman H. and Israel Z., Real-time refinement of subthalamic nucleus targeting using Bayesian decision-making on the root mean square measure, Movement Disorders, 21 (9) 1425-31, 2006.

  45. Heimer G., Rivlin M., Bar-Gad I., Goldberg J. A. and Bergman H. Dopamine replacement therapy does not restore the full spectrum of normal pallidal activity in the MPTP primate model of Parkinsonism, Journal of Neuroscience, 26: 8101-14, 2006.

  46. Rivlin-Etzion M., Ritov Y., Heimer G., Bergman H. and Bar-Gad I., Local shuffling of spike trains boosts the accuracy of spike train spectral analysis, Journal of Neurophysiology 95 (5) 3245-56, 2006.

  47. Bar-Gad I., Elias S., Vaadia E. and Bergman H., Complex locking rather than complete cessation of neuronal activity in the globus pallidus of an MPTP treated primate in response to pallidal microstimulation. Journal of Neuroscience, 24 (33) 9410-9, 2004.

  48. Bar-Gad I., Morris G. and Bergman H., Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Progress in Neurobiology, 71 (6) 439-73, 2003.

  49. Bar-Gad I., Heimer G., Ritov Y. and Bergman H. Functional correlations between neighboring neurons in the primate globus pallidus are weak or nonexistent. Journal of Neuroscience, 23 (10) 4012-6, 2003.

  50. Heimer G., Bar-Gad I., Goldberg J. A. and Bergman H. Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the MPTP primate model of parkinsonism. Journal of Neuroscience 22 (18) 7850-5, 2002.

  51. Bar-Gad I. and Bergman H., Stepping out of the box: information processing in the neural networks of the basal ganglia. Current Opinions in Neurobiology, 11:689-95, 2001.

  52. Bar-Gad I., Ritov Y., Vaadia E. and Bergman H. Failure in identification of multiple neuron activity causes artificial correlations. Journal of Neuroscience Methods, 107 1-13, 2001.

  53. Bar-Gad, I., Ritov Y. and Bergman H. The neuronal refractory period causes a short-term peak in the autocorrelation function. Journal of Neuroscience Methods, 104 155-63, 2001

  54. Bar-Gad I., Havazelet Heimer G., Goldberg J. A., Ruppin E. and Bergman H. Reinforcement driven dimensionality reduction - a model for information processing in the basal ganglia. Journal of Basic & Clinical Physiology & Pharmacology 11:4, 305-20, 2000.


Book Chapters

  1. Bar-Gad I. and Turner R. S., Stimulation Effect on Neuronal Activity in the Globus Pallidus of the Behaving Macaque. In: The Basal Ganglia IX, Part 1 Chapter 6 73-84, 2009. Editors: H.J. Groenewegen, P. Voorn, H.W. Berendse, A.B. Mulder, A.R. Cools.

  2. Erez Y. and Bar-Gad I. Neurophysiological changes in the basal ganglia following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced parkinsonism. In: Neurotoxicity Syndromes Research Focus, Chapter 10 197-219, 2007. , Editor: L. R. Webster.

  3. Turner R. S., McCairn K., Simmons D. and Bar-Gad I. Sequential motor behavior and the basal ganglia - Evidence from a serial reaction time task in monkeys. In: The Basal Ganglia VIII, Part 6 Chapter 13 563-574, 2006. Editors: J. P. Bolam, C. A. Ingham, P. J. Magill.

  4. Bar-Gad I. and Bergman H. Reinforcement driven nonlinear dimensionality reduction in the multilayer network of the basal ganglia. In: Recent Breakthroughs in Basal Ganglia Research, Chapter 4 45-52, 2006. Editor E. Bezard.

  5. Bar-Gad I., Ritov Y. and Bergman H. The high frequency discharge of pallidal neurons disrupts the interpretation of pallidal correlation functions. In: The Basal Ganglia VII, Chapter 5 35-42, 2002. Editors L. F. B. Nicholson, R. L. M. Faull.

  6. Heimer G., Bar-Gad I., Goldberg J. A. and Bergman H. Synchronization of pallidal activity in the MPTP primate model of Parkinsonism is not limited to oscillatory activity. In: The Basal Ganglia VII, Chapter 4 29-34, 2002. Editors L. F. B. Nicholson, R. L. M. Faull.

  7. Bar-Gad I., Kagan I. and Shik M. L. Behavior of hindbrain neurons during the transition from rest to evoked locomotion in a newt. Progress in Brain Research, 123, Peripheral and Spinal Mechanisms in the Neural Control of Movement, 285-294, 1999.


Scientific commentary

  1. Gurkiewicz M., Iron D., Bar-Gad I., and Korngreen A. Rise of the Appendage. Frontiers in Neuroinformatics. doi:10.3389/neuro.11.032.2009, 2009.


bottom of page